

CATIA Training Foils

Advanced Machining

Version 5 Release 9 June 2002 EDU-CAT-E-AMG-FF-V5R9

Copyright DASSAULT SYSTEMES 2002

Course Presentation

Objectives of the course

In this course you will learn how to define a Multi-Axis Flank Contouring operation

Targeted audience Manufacturing users knowing how to work with CATIA V5 Parts

Prerequisites Fundamentals about CATIA V5

Table of Contents

1.	Workbench Presentation	p.4
	The Advanced Machining Workbench	p.5
	Multi-Axis Flank Contouring Presentation	p.6
2.	The Geometry tab	p.7
	Presentation	p.8
	Drives Elements	p.9
	Part Elements	p.11
	Start and Stop Elements `	p.12
3.	The Strategy tab	p.13
	Machining Tab	p.14
	Stepover Tab	p.16
	Finishing Tab	p.18
	Tool Axis Tab	p.19
	Other Parameters	p.29
	HSM Tab	p.30
То	Sum Up	p.32

Workbench Presentation

The Advanced Machining Workbench
 The Multi-Axis Contouring Icon

The Advanced Machining Workbench

- Multi-Axis Flank Contouring operation is available in AMG Workbench
 - AMG Workbench provides you with all milling capabilities from 2.5 to 5 Axis
 - In the toolbar you will find
 - PMG and Drilling operations
 - SMG operations
 - MMG operations
 - Multi-Axis Flank Contouring operation

Multi-Axis Flank Contouring Presentation

? × Multi-Axis Flank Contouring.2 **User Interface** -Name: Multi-Axis Flank Contouring, 1 Comment: No Description Enter the name of the operation -100 0 Enter a line of comment Move the carso **Define operation parameters** 0 100 <u>°</u> 📥 Strategy tab Geometry tab Tool definition tab Stepover Finishing Tool Axis HSM Feeds & Speeds tab Machining Machining tolerance: 0.1mm ? Transition paths tab Max discretization step: ÷ ? 10000mm Max discretization angle: ÷ ? 180deg Close tool path ? **Replay and/or simulate toolpath** Max distance between steps: ? 50mm Manual direction: ? -Auto OK Cancel Preview

The Geometry Tab

Presentation
Drives Elements
Part Elements
Start and Stop Elements

Presentation

This Tab Page includes a sensitive Icon dialog box that allows the selection of :

- Drive Surface elements
 - Flank tool will lean on Drives
 - With respect of tool axis strategy and offset
- Part surface elements
 - Tool end will lay down on Part
 - With respect of tool axis strategy and offset
- Start element 3
 - Used to compute first tool position
- Stop element
 - Used to compute last tool position
- Check elements (optionnal) 5
 - Elements to avoid during toolpath

Offset can be applied on part, drive, check and tool axis

Drives Elements (1/2)

- Face selection: This wizard allows you to select quickly drives
 - To start the navigation, you always need to select at least two faces (first one is start element, second one give the direction to navigate)
 - Then you can select Navigates on belt of faces Navigation is done in order to follow a belt
 - Or you can select
 Navigates on Faces Until a Face
 Navigation is done until a selected face

Drives Elements (2/2)

Local modification :

- Once all drives are selected you can modify locally strategy and offset on each drives
- Local modification wizard
 - Browther on drive : select the drive on which ______ you want to perform modification (selected drive is highlighted)
 - Offset modification
 - Tool axis guidance modification -

Local driv	ve surface 1
Navigatio	
Offset	: on drive
Global:	Omm 🚔 ?
Added lo	ocal: Omm
Tool a:	xis guidance
Global:	Normal to part 🔽 🝷
Local:	<global by="" default=""></global>
🗌 Enab	ole 4 axis
	🕒 OK 🥥 Cancel

Part Elements

Use curves as part : part surface element can be a curve

- Click right on part element sensitive icon and select 'Use curves as part'
 - The system accepts only curves that are boundary of selected drives

Edge selection : This wizard allow you to select quickly curves

- To start the navigation, you always need to select at least two edges (first one is start element, second one give the direction to navigate)
- Then you can select
 Navigates on belt of edges
 Navigation is done in order
 to follow a belt
- Or you can select
 Navigates on Edges Until an Edge
 Navigation is done until
 a selected face

Start and Stop Elements

Must be a surface, a plane, an edge or a vertex

Start

 The algorithm needs to know a start position. This position is computed using the first selected drive and the start element

Stop

 As for the start element this position is computed using the last selected drive and the stop element

Start/Stop conditions

- Positionning of the tool is automatically computed. But it can be modified using right click on « start » or « stop »
- An offset can be applied

Copyright DASSAULT SYSTEMES 2002

Start or stop element

The Strategy Tab

Machining Tab
Stepover Tab
Finishing Tab
Tool Axis Tab
Other Parameters
HSM Tab

Machining Tab (1/2)

Machining tolerance

 Value of the maximum allowable distance between the theoretical toolpath and the toolpath computed

Max discretization step and angle

 Maximum distance and angle between two outputed points of toolpath (default values are infinite, different settings has to be done according to post-processor and machine feature)

- Close toolpath
 - Option to activate in closed pocket when the first drive element is used as last drive

Machining	Stepover	Finishing	Tool Axis	HSM	
Machining tole	rance:	Γ).1mm		?
Max discretiza	tion step:	1	.0000mm	-	?
Max discretiza	tion angle:	1	.80deg		?-
Close tool	path ?				
Max distance	between steps:	5	50mm		? ~
Manual directi	on:		Au	to 💌	? ~

Machining Tab (2/2)

Click here to select normal to
planar 4X constraint

 Rough estimate distance used by the algorithm to search for next drive or check element (In most of cases do not modify this parameter)

Reference point and Manual direction

- This point is automatically computed (using first drive, part and start element) But in particular geometric cases it could have to be manually defined
- Using a reference point, direction can be automatic, right or left:

998 <mark></mark>					-
Machining	Stepover	Finishing	Tool Axis	ням	
Machining tole	erance:		0.1mm		?
Max discretiza	ation step:		10000mm	-	?
Max discretiza	ation angle:		180deg		?
Close tool path					
Max distance	between step	s:	50mm		?
Manual directi	on:		Au	to 💌	?
					in the second

Stepover Tab (1/2)

• Tool path style

Zig-zag or one way

Sequencing

Radial or Axial priority

Radial priority

Machining Stepover	Finishing IoolAxis HSM
Tool path style:	Zig zag 💽 ?
Sequencing:	Radial first 💽 🥐
Radial Strategy (Dr)	
Distance between paths:	1mm 📑 🐉
Number of paths:	1 ?/
Axial Strategy (Da)	
Mode:	By offset 💽 🚱
Distance between paths:	0.5mm 📑 🐾
Number of levels:	1 🋃 🥐

Stepover Tab (2/2)

Radial strategy

 Define the distance between paths and the number of paths

Axial strategy

Select the mode by offset or by thickness

By offset: toolpath is computed once then an offset along axis is applied for each level

By thickness: toolpath is re-computed for each level

 Define the distance between paths and the number of levels

. 1	-

Finishing Tab

No side finish

At last level

At each level

Side thickness Side thickness on bottom

Side thickness on bottom

At bottom

Bottom thickness

Side thickness

Each side and bottom finishing strategies can be combined:

- At each level and bottom
- At last level and bottom

Tool Axis Tab (1/6)

Tanto Fan guidance definition:

 Tool is tangent to the drive surface at a given contact height*. Tool axis is the interpolation between the start and end positions

 * The contact height is used to determine a point on the drive surface where the tool must respect tangency conditions Default value is zero and is related to the bottom of the tool.

Contact height:	Omm	📑 🥐

Copyright DASSAULT SYSTEMES 2002

Exercise Presentation

And now practice on the Ex01-TantoFan exercise, to learn about:

- Geometry definition
- Tanto Fan strategy

Tool Axis Tab (2/6)

- Guidance Combin Tanto
 - = Tanto Fan (during leave* distance) + Tanto + Tanto Fan (during approach* distance)
- Tanto guidance definition: (exists alone only as a local mode)
 - Tool is tangent to the drive surface at a given contact height. Tool Axis contained in a plane normal to forward direction
 - *Approach and leave distance parameters can be modified

Exercise Presentation

And now practice on the Ex02-CombinTanto exercise, to learn about:

Combin Tanto strategy

Tool Axis Tab (3/6)

۲ **Guidance Combin parelm**

= Tanto Fan (during leave* distance) + Tanto Parelm + Tanto Fan (during approach* distance)

Tanto parelm guidance definition: •

- The tool axis is tangent to the drive surface at the specified contact height and follows the isoparametrics of the Rsur
- *Approach and leave distance parameters can be modified:

Exercise Presentation

And now practice on the Ex03-CombinPareIm exercise, to learn about:

Combin Parelm strategy

Tool Axis Tab (4/6)

- Guidance Mixed Combin
 - This strategy is equivalent to Combin Parelm except on planar or cylindrical surfaces on which Combin Tanto strategy will be applied (as isoparametrics direction may not be appropriate to follow on this kind of surface)
 - *Approach and leave distance parameters can be modified

Exercise Presentation

And now practice on the Ex04-MixedCombin exercise, to learn about:

Mixed Combin strategy

Tool Axis Tab (5/6)

- Fixed Axis guidance definition:
 - Tool Axis is fixed

Click here to select Tool Axis

Tool Axis Tab (6/6)

- Normal to part guidance definition:
 - Tool Axis is normal to selected part while the tool remains in contact with Drives

Other Parameters

Disable fanning:

 With Combin Tanto, Combin parelm and Mixed Combin strategy, you can desactivate fanning on start and stop element using this option.

Useful cutting length

Fanning algorithm is using tool cutting length parameter.If needed to control fanning, this parameter can be modified with this option.

🔍 4 Axis

 In case of local modification on drives with Normal to part and Tanto guidance 4 Axis mode is available. Therefore you need to select planar 4X constraint

Machining	Stepover	Finishing	Tool Axis	ням	
Guidance:		Combin	Parelm	•	? ~
Contact heigh	nt:	[Omm		?
Leave fannin(g distance:		5mm		? ~
Approach fan	ning distance:		āmm		? ~
Disable fannir	ng: N	o		•	? ~
Control fanning using tool parameter					
Useful cutting) length:	[20mm	-	?

HSM Tab

- Cornering and cornering on side finish path
 - Allow the user to define a cornerisation of the toolpath by giving a corner radius

Machining Stepover	Finishing Tool Axis	нѕм
🖾 Cornering 🥐		
Corner radius:	1mm	?
Cornering on side finish pa	ath 🥐	
Corner radius:	1mm	.

Added Exercise Presentation

And now practice on the added exercises, to learn about:

Flank finishing Start and End in closed pocket Joggle management Thickness on toolpath Curves as part At the end you will be able to fully finish 5 axis flanks of exercise part.

To Sum Up

In this course you have seen :

Necessary geometrical elements to define a Flank Contouring operation

- Drives
 - Navigation on drives, local modification on drives
- Parts (can be a curve)
 - Multi part
- Start/Stop
 - Open or closed pocket

5 Axis strategies of Flank Contouring operation

Tanto Fan, Combin Tanto, Combin Parelm, Mixed Combin, Fixed axis, Normal to part, 4-Axis

Stepover management

- Multi-radial
- Multi-axial with thickness or offset
- Side and bottom finishing strategies

HSM option