
Chapter 1
Introduction to Freeform
Surface Modelling

Abstract The ability to use a variety of CAD tools is one of the most basic
competences expected of a modern engineer. It represents a language and a tool,
and is used to communicate with other engineers anywhere in the world. While the
basic CAD operations are fairly easy to learn, understanding the functioning of
CAD tools requires more detailed knowledge of mathematical and computer laws
behind the individual CAD operations. In this chapter the reader will learn about the
mathematical laws of CAD curves and surfaces that are the key to understanding
freeform modelling. It begins with a computer description of the curves in space,
which is followed by various procedures for creating freeform surfaces based on
these curves. The chapter ends with an explanation of several definitions and
descriptions of the transitions, i.e., the continuity between the curves and the sur-
faces. Understanding the latter is becoming increasingly important for the auto-
motive, aerospace and consumer-goods industries, as properly executed transitions
between surfaces have a significant effect on the strength, aerodynamic, ergonomic
and aesthetic properties of a product. At the same time, these topics are often not
covered by many regular engineering curricula due to a lack of time or because their
importance is overlooked. As a result, engineers only deal with them when they
face a concrete challenge for the first time—which is often on their first job.

1.1 The Role of Freeform Surfaces in Modern
Modelling and Design

In order to represent objects or products, i.e., technical systems in general terms, a
variety of tools has been used from early times. Together with analogue records in
3D space, solutions were being explored for the best possible digital records. The
advent of the computer processor and its adapted mathematical relations brought
about an opportunity for a high-quality digital reproduction of 3D space.
Throughout the development of 3D modelling, different procedures and approaches
evolved that seemed fairly important at the time. However, only with the passage of
time did some of the methods get thoroughly tested and so were able to establish
themselves as necessary or important. This is why it is vital to understand that some
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of the development concepts and models were important and necessary in order to
be able to create the clearest possible direction and the more general and intuitive
use of modellers.

Historically, development was gradual and went from a simple representation of
wire models, surface representation of 3D models and eventually to a solid model
as the most faithful way of representing realistic models in space (Fig. 1.1).

Such developments and opportunities gradually brought solutions to the user that
were comparable across different modellers. This makes sense, as modeller
developers eventually meet the users, who generally have a similar approach to
solving tasks and requirements. For this reason, the large number of providers was
gradually reduced to a small number of suppliers of general 3D modelling equip-
ment. At the same time there are also developers for specific needs and specific
designs, and modellers include separated modules, adapted to different tasks.

The user interface is an important quality of a modeller, and it either is or should
be standardised according to the input commands, as software providers will have
to reach an agreement as to how the user can change from one modeller to another.

Geometric transformations are the next significant module. The level of their
accuracy determines the actual use of a modeller. Of course it does not include
simple transformations, but primarily the modelling of freeform surfaces that merge
into a logically re-shaped new form that can be used in most existing technologies.
This means that geometric transformations should be adapted to specific tech-
nologies in use, such as pressure casting, thermoplastic injection moulding, die
casting, glassblowing, etc.

1.2 Topological Building Blocks of 3D Models

The geometry of bodies in sophisticated 3D modelling systems is characterised by
descriptions of the individual basic geometric elements: points, straight lines, parts
of a circle, general 3D curves and surfaces of any complexity. There are also
alternative descriptions of bodies, based on the use of other elements: describing the
surface of a 3D object exclusively by triangles, describing a 3D volume by ele-
mentary volume elements (voxels), grouping 3D primitives according to their
function, etc. They will not be dealt with in this chapter.

• Points represent the coordinates of knots.
• Edges represent lines where edges are located. They are bounded by the

corresponding knots.
• Loops represent the closed connection of edges, defined by points.
• Surfaces represent a similar data structure to the loops. They are added to the

surface normal data only in order to define them in space.
• Volume represents a space, uniquely and in its entirety bounded by surfaces,

which is why it is referred to as a closed volume. Normals to the surfaces that
have been completely finished are oriented outwards.
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The basic building blocks, such as a point, a straight line, a circle and a circular
arc, have been dealt with in the literature (e.g., [1, 2]), while this book will focus
primarily on curves and surfaces.

First, however, it must be pointed out that 3D modelling should be understood as
modelling in space and defined by coordinate systems. In everyday speech, an
incorrect term CAD: Computer Aided Design is often used. Such a term is com-
pletely wrong, as there is no programming language for the purpose of designing, it
is just for modelling. So, the correct term is 3D modeller. As of late, modelling
software providers also tend to say “3D modellers” when referring to their products.
In other words, design is much more than giving a product a shape that only serves
its own purpose. It requires understanding and a consideration of all the physical,
mathematical and other principles that define the shape and the standards, set by a
cultural or technical environment, and the use of manufacturing, application and
decomposition technologies. Design also requires that all the design solutions are
clearly supported by the corresponding calculations.

1.2.1 Curve

In general terms a curve can be defined as the shortest connection between two end
points. Curves are generally expected to be smooth, i.e., with no sharp transitions,
referred to as tangency (a first-order continuity) in mathematics. When a continuous
change of the radius of a curve curvature at each point is also expected, it requires a
second-order continuity. In mathematical terms it means that a curve should be

Fig. 1.1 Historical development of the theory of modelling and the use of modellers [1]
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differentiable twice over the required interval. High-school plane geometry provides
plenty of examples for such curves, e.g., conic sections (ellipse, hyperbola, para-
bola; Fig. 1.2); polynomial functions (Fig. 1.3) or rational functions. A curve can
also be presented in the form of a table of points, with the values of the coordinates
x, y, z, whereas in between the points it is possible to use linear, parabolic or any
other interpolation with a higher-order polynomial.

Curves can also be given parametrically. In this form, each point coordinate on a
curve also depends separately on one coordinate more than the degree of the used
curve. A new coordinate can then be introduced by adding another parameter,
denoted as t, for example. Its value must be chosen over an interval between 0 and 1.
For a more detailed numerical analysis, both extreme values are of special interest.
They are the beginning t ¼ 0 and the end t ¼ 1. The parameter t ¼ 0 is not nec-
essarily used at the beginning of the curve. Figure 1.4 shows an example of a
parametric curve, where the x and y coordinates are given separately with their
polynomial of the type that depends only on the parameter t. The equation shows that
such a curve will turn randomly across the space, i.e., it has no boundaries, similar to
those in explicitly given functions of the y ¼ f xð Þ type (the multivalue problem). For
this reason it is vital to be careful with the selection of functions. They need to be
single-valued over the whole interval under consideration.

x tð Þ ¼ an � tn þ an�1 � tn�1 þ � � � þ a1 � tþ a0 ð1:1Þ

Over the past 20 years, B-splines and their upgraded NURBS (Non-Uniform
Rational B-spline) have emerged as the most common way of describing curves.
These are curves consisting of individual cubic parametric space polynomials, and

Fig. 1.2 Parabolas and hyperbolas as an example of curves [1]
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they are also determined by control points (Fig. 1.5). Their key advantages over
other types of curves are as follows:

• they are defined by means of a relatively small number of control points,
• they are very flexible and have an excellent ability to approximate the frequently

used curves, such as circles, conic sections and polynomials,
• when interpolated through given points, they intuitively “bend” and do not “run

far away” from the polyline, connecting the interpolation points,
• they are independent of the position in the coordinate system, which makes

them easy to rotate into any position in space,
• if necessary, they exhibit locality, which means that modifying the position of

one interpolation point affects only a limited curve area.

Fig. 1.3 A polynomial as an example of using curves [1]

Fig. 1.4 A parametric curve,
determined by two
third-degree polynomials [1]
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Parametric curves, expressed in a mathematical form as B-splines or NURBS,
are further discussed in Sect. 1.3.

1.2.2 Surface

Surfaces are shapes that are usually defined in 3D space. Because describing a
surface can be a rather complex job, there are several approaches available to model
objects using surfaces. Examples of highly complex surfaces can include modelling
the organic parts of living organisms, such as the human skeleton or brain. Our
focus will be on describing surfaces that can be created with conventional proce-
dures and involving sensible effort and acceptable accuracy. The following are the
most frequent types of describing surfaces:

• surfaces as parts of curved surfaces of regular geometric bodies,
• parametric surfaces,
• interpolate surfaces,
• polygon meshes (mostly triangles and quadrilaterals).

Modelling bodies in space often involves a surface that is a planar polygon, such
as a rectangle. We also often deal with surfaces that are in part or in entirety parts of
curved surfaces of regular geometric bodies, e.g., a cylinder, a triangle, a sphere or a
torus. Such surfaces are relatively easy to describe with analytic equations, par-
ticularly in a parametric form (Figs. 1.6 and 1.7).

Fig. 1.5 B-spline, determined by control points [1]
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The equation of a cylinder can be parametrically written as:

P s; tð Þ ¼
x s; tð Þ
y s; tð Þ
z s; tð Þ

8<
:

9=
; ¼

R � cos sð Þ
R � sin sð Þ

t

8<
:

9=
; ð1:2Þ

where R is the radius of the cylinder, s is a parameter, interpreted geometrically as
an angle over an interval 0; . . .; 360½ �, and t is a parameter over an interval
0; . . .;H½ �, where H is the height of the cylinder.
A possible equation for the lateral surface of a cone can be parametrically written

as:

P s; tð Þ ¼
x s; tð Þ
y s; tð Þ
z s; tð Þ

8<
:

9=
; ¼

R � 1� t
H

� � � cos sð Þ
R � 1� t

H

� � � sin sð Þ
t

8<
:

9=
; ð1:3Þ

Fig. 1.6 Cylinder and cone surfaces [1]

Fig. 1.7 Sphere and torus surfaces [1]
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where R is the radius of a cone, s is a parameter, interpreted geometrically as an
angle over an interval 0; . . .; 360½ �, and t is a parameter over an interval 0; . . .;H½ �,
where H is the height of the cone.

The equation of a sphere can be parametrically written as:

P s; tð Þ ¼
x s; tð Þ
y s; tð Þ
z s; tð Þ

8<
:

9=
; ¼

R � cos sð Þ � cos tð Þ
R � sin sð Þ � cos tð Þ

t � sin sð Þ

8<
:

9=
; ð1:4Þ

where R is the radius of a sphere, s is a parameter, interpreted geometrically as an
angle over an interval 0; . . .; 360½ �, and t is a parameter, interpreted geometrically as
an angle over an interval 0; . . .; 360½ �, and is orthogonal to the parameter s.

The equation of a torus can be parametrically written as:

P s; tð Þ ¼
x s; tð Þ
y s; tð Þ
z s; tð Þ

8<
:

9=
; ¼

cos sð Þ � Rþ r sin tð Þð Þ
sin sð Þ � Rþ r sin tð Þð Þ

r � sin sð Þ

8<
:

9=
; ð1:5Þ

where R is the major radius, r is the minor radius of the torus, and s is the
parameter, interpreted geometrically as an angle over an interval 0; . . .; 360½ �, and t
is a parameter, interpreted geometrically as an angle over an interval 0; . . .; 360½ �,
and is orthogonal to the parameter s.

It should be noted that the presented shapes (a cylinder, a cone, a sphere and a
torus) can be mathematically defined separately for each coordinate by defining the
pitch for the coordinate s, e.g., 0.002 mm, which allows the tool travel via the
controller using the same pitch. This means that inside an NC machine’s controller,
a mathematical operation, following the equation of a geometric body, can take
place, and that the calculated coordinates are directly written into the command
instructions in charge of moving the tool across, for example, a Cartesian coordi-
nate system.

Interpolate surfaces can be designed by supposing a limited number of known
points (edges), through which a surface runs. On the remaining part of the surface—
that could be referred to as freeform surfaces—let us suppose a smooth, calm and
intuitively foreseeable course (Fig. 1.8). Our description will focus on surface
patches with four edges. Each of these edges can represent any curve. Such cases
are typical of managing freeform surfaces when working on products. Some typical
examples of interpolate surfaces include:

• linear interpolation between two opposite boundary curves,
• bilinear interpolation of the interior, when all four boundary curves are known,
• bi-polynomial interpolation, when an n� m mesh of orthogonal curves is

available.

A more detailed description of the individual approaches can be found in
Sect. 1.4.
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Freeform parametric surfaces are a generalised form of parametric curves.
In Sect. 1.2.1 an individual coordinate of a 2D or 3D polynomial curve was defined
as x tð Þ ¼ an � tn þ an�1 � tn�1 þ � � � þ a1 � t1 þ a0, while parametric surfaces repre-
sent the tensor product of the individual coordinates in the direction of the
parameter t and in the direction of the parameter s. In engineering graphics,
third-degree parametric surfaces (i.e., cubic parametric surfaces) in particular have
become established. Replacing a set of the so-called basis parametric functions
t3; t2; t; 1 by basis functions will result in the so-called Bézier cubic parametric
surface patch. Like with expanding the usability area of the parametric curves,
Bézier’s formulation of the surface patch can also be extended to surface splines
and NURBS surfaces. This will be discussed in detail in Sect. 1.3. Using a rela-
tively small number of available control points, this type of surface (Fig. 1.9) can
result in the efficient shaping of randomly curved surfaces.

Polygon meshes are used to describe surfaces when they are too complex for an
analytical description. A typical example from everyday use is capturing data on
surfaces by means of the optical or mechanical contact scanning of 3D objects.
Optical scanners usually capture from several thousand to several million dots in
space. Using appropriate software, these dots are then filtered, reduced if necessary,
and connected into a polygon mesh, usually consisting of triangles, as shown in
Fig. 1.10. In special cases it is also possible to generate a quadrilateral mesh. Using
a mechanical contact scanner yields significantly fewer contact dots; however, it
improves the possibility of modifying the surfaces between the dots. Using one or
the other measuring method is a question for the engineer and depends on the
method of work and the approach to product development.

Another example of using polygon meshes is running computer simulations in
the area of strength, heat transfer, fluid dynamics or injection moulding. In this
simulation it is a reverse process. A computer modeller starts with an analytically

Fig. 1.8 Interpolate surface
defined by two boundary
curves [1]
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described geometry. In the second step, a special pre-simulation part of the software
divides the described surface geometry into a large number of triangles or
quadrilaterals. The resulting elementary parts are then used to define the
matrix-simulation equation, which is used to calculate the distributions, such as
stress, deformation, temperature, pressure, etc.

Fig. 1.9 Freeform parametric surface described with 16 control points [1]

Fig. 1.10 Point cloud of a scanned surface (left) and a triangle mesh (right)
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1.3 B-spline Curves and NURBS Curves and Surfaces

The basic elements used for creating freeform surfaces are linear elements, gen-
erally referred to as curves. They represent an edge or a connection between two
points. A surface can be formed by linear elements related to one another in some
relationship. In the Cartesian coordinate system we normally use orthogonality at
the intersections between linear elements (curves). The interpenetration of
orthogonally connected linear elements (curves) is used to present a surface.

Let us first take a look at how a linear element (i.e., curve) is defined. From the
curves used in space modelling the following properties are expected:

• zeroth-, first- and second-order continuity,
• good deformability; local and global control is possible,
• maintaining the shape when subject to geometric transformations (especially

complex transformations, such as rotation in space),
• tendency to reduced variation,
• the simplest possible mathematical description,
• universality of the mathematical description for all types of standard shapes

(straight lines, parts of circles, parabolas, ellipses, polynomials, etc., as well as
flat faces, and cylindrical, spherical and interpolate surfaces).

A Bézier curve satisfies all these properties. Pierre Bézier was a French engineer
(Fig. 1.11) who worked for the Renault car manufacturer between 1933 and 1975,
where he dealt with the problem of transferring the prototype geometry of a car
body (which was made out of wood or another material) to the drawing board, or
accurately defining it in a mathematical form. In 1966 he published an article in the
Automatisme journal, where he defined a novel method for describing parametric
cubic curves, which earned him lasting fame, as his description became the basis for
the mathematical description of curves and surfaces for all subsequent computer
modellers. Paul de Casteljau, an engineer at Citroën, had detailed such a description
before Bézier, but he only published it in the company’s internal newsletter.
Because the information was not accessible, Casteljau’s notation passed into
oblivion. Today, Bézier’s description is established and B-curves are named after
him.

Interpolation has been used for a long time to create new shapes. In our case, the
problem is about guiding a smooth and ‘appealing’ curve through a set of given
points. In the past, craftsmen and designers made use of thin wooden or metal
splines. These metal splines were firmly tied together, which made them deform-
able, like a pile of boards, resting on two supports. Engineers used them for the
purpose of flexible curves as late as 1990. They fixed the tied metal splines at
support points (Fig. 1.12), and, if necessary, further weighted them with lead
(Fig. 1.13). We can attempt to represent the shape y ¼ y xð Þ of such a wooden or
metal spline using a differential equation:
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Fig. 1.11 Pierre Bézier, French engineer and mathematician

Fig. 1.12 An example of using a metal spline (left) and modern commercial bend ruler (right)

M xð Þ ¼ E � I � y00

1þ y02ð Þ32
ð1:6Þ

The product E � I represents the stiffness coefficient. It is constant if the material
is homogenous and the spline has a constant cross-section. In the absence of any
other outside forces between the support points and weights, the torque of the
internal forces M xð Þ linearly depends on the distance x.

When the deformations are small y0 � 1, the term y0 is negligible, and Eq. 1.6 can
be approximated by E � I � y00 ¼ M xð Þ or y4 ¼ 0. Due to the linearity of the torque
M xð Þ, the shape y ¼ y xð Þ is piecewise cubic and continuous. The first and second
derivatives are continuous, too. The shapes of the curves that had for a long time been
used for designing and shaping new products therefore originate in mechanics and are
based on the deflection line of the loaded (and therefore deformed) spline or profile.
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1.3.1 Cubic Parametric Curves

Three-dimensional space modelling requires a description of the space curves that
need to be numerically manageable and not subject to the problems of numerical
solutions. We also do not want oscillating curves, which happens with the use of
higher-order polynomial curves. The simplest, non-problematically continuous
curves are polynomials. If at least second-order continuity is required, parametric
cubic polynomials will be sufficient.

x tð Þ ¼ a1t3 þ b1t2 þ c1tþ d1
y tð Þ ¼ a2t3 þ b2t2 þ c2tþ d2
z tð Þ ¼ a3t3 þ b3t2 þ c3tþ d3

ð1:7Þ

The parameter t can generally have a value over any interval. In our case, when
the parameter t is used as part of a uniform space, the value over an interval
0; . . .; 1½ � is used. The curve can be written in matrix form as:

P tð Þ ¼
x tð Þ
y tð Þ
z tð Þ

2
4

3
5 ¼

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

2
4

3
5 �

t3

t2

t
1

8>><
>>:

9>>=
>>; ð1:8Þ

Fig. 1.13 Wooden spline, weighted with lead, set to outline a ship’s hull
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If the coefficients a1; a2; a3 are combined into the vector A and the coefficients
b1; b2; b3 into B and so on, it can be written as:

P tð Þ ¼ Af g Bf g Cf g Df g½ � �
t3

t2

t
1

8>><
>>:

9>>=
>>; ð1:9Þ

We can opt for different shapes by choosing parametric cubic polynomials.
Different authors were looking for the most suitable examples.

Among all the parametric cubic polynomials, the most appropriate are those
where simple functions t3; t2; t; 1ð Þ (also referred to as basis functions) are replaced

by Bernstein polynomials 1�tð Þ3; 3 � t � 1� tð Þ2; 3 � t2 � 1� tð Þ; t3
� �

(Fig. 1.14).

Using Bernstein polynomials, Eq. 1.9 can be written as:

P tð Þ ¼ P0f g P1f g P2f g P3f g½ � �
1� tð Þ3

3t2 1� tð Þ2
3t 1� tð Þ

1

8>><
>>:

9>>=
>>; ð1:10Þ

Equation 1.10 defines the Bézier cubic parametric polynomial and is a genius
reformulation of the (Hermitian) shape of the cubic polynomial 1.8. It turns out that
the vectors P0f g; P1f g; P2f g; P3f g can be interpreted as x; y; zf g coordinates and
termed control points, and a combination of the four points P0 � P1 � P2 � P3

should be termed the control polyline (polygon) of the cubic parametric curve P tð Þ.
Such an interpretation allows an intuitive determination of the shape of the entire
curve if the position of only four control points is known.

Fig. 1.14 Bernstein polynomial basis [1]
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Such a defined curve has the following connection with the control points:

• the curve starts at the point P0 and ends at the point P3; it is parametric and
defined for the parameter t over an interval 0; . . .; 1½ �; at the point P0, the
parameter value is t ¼ 0, at the point P3 the parameter value is t ¼ 1;

• the curve at the point P0 and P t ¼ 0ð Þ is tangential to the control polygon and
the straight line P0 � P1; analogously, at the point P3 and P t ¼ 1ð Þ it is tan-
gential to the line P2 � P3;

• the curve only approaches the points P2 and P3.

A Bézier curve has other favourable properties:

• a plane convex control polygon results in a convex Bézier curve,
• using a Bernstein polynomial reduces the variations,
• with special geometric planning it is possible to reconstruct the shape of a curve

from just the shape of the control polygon.

In geometric transformations, when describing curves using control points, it is
possible to determine the curve in a transformed position as soon as you transform
the control points.

The set of four Bernstein polynomials is a special case of a set of n-order
blending functions. It can be written as:

Bi;n tð Þ ¼ C n; ið Þ � ti � 1� tð Þn�i ð1:11Þ

where the binomial coefficient is C n; ið Þ ¼ n!
i! n�1ð Þ!.

Bézier curves can also be defined by higher-order polynomials. It allows there to
be any increase in the number of control points. Unfortunately, it turns out that
increasing the order of polynomials also results in more complexity of the math-
ematical operations, taking place during operations among the geometric building
blocks of computer models (e.g., calculating surface intersections). As a compro-
mise between complexity and efficiency, cubic polynomials appeared in 3D mod-
elling. A Bézier curve can also finally be formulated as:

P tð Þ ¼ Pn
i¼0

Pi � Bi;n ð1:12Þ

A third-order Bézier curve in parametric form is expressed as:

P tð Þ ¼
X3
i¼0

Pi � Bi;3

¼ P0 � 1� tð Þ3 þP1 � 3t 1� tð Þ2 þP2 � 3t2 1� tð ÞþP3t
3

ð1:13Þ

Example Let us determine the course of a Bézier curve, where a set of four points is
known or we select them. In order to make the example simple, let all the points lie
in the xy plane. The control points are:

1.3 B-spline Curves and NURBS Curves and Surfaces 15



P0 ¼ 0; 0; 0f gT P1 ¼ 1; 1; 0f gT P2 ¼ 2; 0; 0f gT P3 ¼ 3; 1; 0f gT

Let us, for example, calculate 11 consecutive points on the curve at the
parameter value t ¼ 0:0; 0:1; 0:2; 1:0f g:

P 0:0ð Þ ¼ P0 ¼ 0; 0; 0f gT

P 0:1ð Þ ¼ P0 � 1� tð Þ3 þP1 � 3t 1� tð Þ2 þP2 � 3t2 1� tð ÞþP3 � t3
¼ 0; 0; 0f g � 1� 0:1ð Þ3 þ 1; 1; 0f g � 3 � 0:1 � 1� 0:1ð Þ2
þ 2; 0; 0f g � 3 � 0:12 � 1� 0:1ð Þþ 3; 1; 0f g � 0:13

¼ 0:30; 0:24; 0f gT
P 0:2ð Þ ¼ 0:60; 0:39; 0f gT
P 0:3ð Þ ¼ 0:90; 0:47; 0f gT
P 0:4ð Þ ¼ 1:20; 0:50; 0f gT
P 0:5ð Þ ¼ 1:50; 0:50; 0f gT
P 0:6ð Þ ¼ 1:80; 0:50; 0f gT
P 0:7ð Þ ¼ 2:10; 0:53; 0f gT
P 0:8ð Þ ¼ 2:40; 0:61; 0f gT
P 0:9ð Þ ¼ 2:70; 0:67; 0f gT
P 1:0ð Þ ¼ P3 ¼ 3; 1; 0f gT

The control points, polyline and calculated points on a Bézier curve are shown in
Fig. 1.15.

1.3.2 B-splines

Bézier curves are not suitable for direct use in 3D modelling. A Bézier curve has
two major deficiencies: globality (poor definition of localities) and too few control
points. If one control point moves, it to some extent affects the entire curve. Bézier
curves can generally also not be drawn through an arbitrary number n of points
without merging several segments, each described separately.

You can overcome both deficiencies by defining the B-splines. Like with a
Bézier curve, a B-spline is also determined by a control polyline and only
approaches the control points, despite now having an unlimited number of points.
A B-spline is piecewise cubic on some interval of the parameter t. When t exceeds
the interval boundary, the coefficients change accordingly.
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A B-spline can be expressed in a similar way to a Bézier curve with blending
functions:

P tð Þ ¼ Pn
i¼0

Pi � Ni;k ð1:14Þ

Equation 1.14 includes a curve with nþ 1ð Þ control points Pi, whereas the
blending functions Ni;k are of k � 1ð Þ order. In this case, the order (or degree) of the
blending function is completely independent of the number of control points.
Instead of Bézier (Bernstein) blending functions a slightly different basis was used.
The key novelty is that it is possible to increase the number of control points in the
B-spline’s blending functions without increasing the order of the blending function.
The blending functions for a B-spline can be defined by means of a recursive
algorithm (Eqs. 1.15 and 1.16), published by C. de Boor in 1972 [3, 4]:

Ni;1 tð Þ ¼ 1; ti � t\tiþ 1

0; elsewhere

�
ð1:15Þ

And, when k[ 1:

Ni;k tð Þ ¼ t�ti
tiþ k�1�ti

Ni;k�1 tð Þþ tiþ k�t
tiþ k�tiþ 1

Niþ 1;k�1 tð Þ ð1:16Þ

The variable t is a coordinate in the curve’s parametric space, and ti are the values
of the knot vector T [5]. You can now imagine the curve as a set of polynomial
sections (segments) with different values of the variable t. The point where the two
segments merge is referred to as knot ti, and a set of knots as a knot vector:

Fig. 1.15 Determining points on a Bézier curve
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T ¼ t0; t1; . . .; ti; . . .; tnþ kf g ð1:17Þ

Formulating a Bézier curve, the variable t was assigned a value over the interval
0; . . .; 1½ �. Formulating a B-spline, the knots can in principle assume any value, the
only condition being that they increase monotonically. The shape of the curve
depends slightly on the selection of the value for the knot vector.

Some knots can even be repeated several times. When two knots coincide to
form one, it is referred to as a knot having twofoldness.

A particularly interesting example of a B-spline is a knot vector where the first k
and the last k knots are repeated. A k-order B-spline can have up to k�1 continuous
derivatives. Each knot repetition reduces the number of possible continuous
derivatives by 1. In the case of a k-fold repetition of knots, the curve begins at the
first and ends at the last control point, whereas at these two points the curve is
tangential to the control polyline (analogous to a Bézier curve). In the case of a
cubic spline k ¼ 4ð Þ the first four and the last four values of the knot vector are
repeated. In such cases, when (only) the first k and the last k knots of the knot vector
are repeated (Eq. 1.8), this is referred to as the knot vector being clamped.

T ¼ t0; t1; . . .; tk�1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}; tk; tkþ 1. . .; tn�1; tn|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}; tnþ 1; . . .; tnþ k|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
8<
:

9=
; ð1:18Þ

where

t0 ¼ t1 ¼ � � � ¼ tk�1 k identical knots
tk; tkþ 1; . . .; tn�1; tn n�kþ 1 internal knots
tnþ 1 ¼ tnþ 2 ¼ � � � ¼ tnþ k k identical knots

Clamped B-splines are a special example of curves that are very often used in
computer graphics and modellers. Their practical value lies in the fact that the curve
begins at the first and ends at the last control point (Fig. 1.16), and that the curve at
these two points is tangential to the control polygon (analogous to a Bézier curve).
When a different knot vector is used, the ends of the curve do not coincidewith thefirst
and the last control points. When knots are repeated, it yields a quotient 0=0 in the de
Boor algorithm. In programming the expression 0=0 should be equalised with 0.

Example Let us take the control polygon in Fig. 1.16, where nþ 1ð Þ ¼ 7 control
points are given. The blending functions of the B-spline are cubic, i.e., third-order,
and k ¼ 4. Therefore, there are 7 blending functions in total N0;4 tð Þ;N1;4 tð Þ;
. . .;N6;4 tð Þ, and the number of knots is nþ 1þ k ¼ 11. The curve shown for the
clamped B-spline therefore consists of 4 segments of cubic blending functions. The
clamped-knot vector is therefore expressed as:

T ¼ 0; 0; 0; 0; 1; 2; 3; 4; 4; 4; 4f g ð1:19Þ

Figure 1.17 shows the blending functions N1;4 tð Þ, for a cubic k ¼ 4 B-spline,
defined by means of the knot vector 1.19.
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All the examples of B-splines presented above had knots over an interval
0; nþ k½ �. It is nevertheless advisable to normalise the knot vector so that it involves
the interval 0; 1½ �. This improves the accuracy of numerical calculations with a
floating point due to the higher density of decimal places over this interval [6].

Fig. 1.16 A B-spline with seven control points, clamped to the first and last control points

Fig. 1.17 Blending functions of a cubic B-spline defined by the knot vector
T ¼ 0; 0; 0; 0; 1; 2; 3; 4; 4; 4; 4f g
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When knots divide the whole parametric space of the curve P tð Þ into uniform
intervals (e.g., the one in Eq. 1.19 or another vector written in a normal form:
T ¼ 0; 0; 0; 0; 0:2; 0:4; 0:6; 0:8; 1; 1; 1; 1f g), this is referred to as the curve being a
uniform B-spline. Generally, these intervals do not need to be uniform; knots can be
distributed unequally across the parametric space of the curve. The only important
thing is that the order of knots is not falling, i.e., that the next knot is higher or equal
to the preceding one.

It has been explained above what happens when knots at the beginning and the
end of the knot vector are repeated k-times. A special example of non-uniform
B-splines is the curves where multiple internal knots appear (e.g.,
T ¼ 0; 0; 0; 0; 0:2; 0:2; 0:2; 0:8; 1; 1; 1; 1f g). Increasing the multiplicity s of internal
knots decreases the continuity level of the curve in a given knot as a result of the
decreasing number of blending curves that do not equal 0 in this knot. When the
multiplicity of internal knots is s ¼ k � 1 (e.g., three repetitions of the internal knot
in a k ¼ 4 -order cubic spline), it leaves only one influential blending function,
which means that only one control point affects that particular knot. This results in
the curve passing through this particular control point; however, its transition from
the left to the right of this point is no longer smooth (tangential), due to Ck�1�s ¼
C0 (see Sect. 1.5). A further increase in the multiplicity of internal knots to the
value k� s makes no sense, as this would remove the last remaining blending
function at a given control point, which would eliminate any effect of the control
point on the curve.

Some interesting properties can be achieved by increasing the multiplicity of
internal knots. These include special tangent conditions or even sharp edges on the
shape of the curve. Figure 1.18 shows a B-spline defined on the same set of control
points. In the first case the multiplicity (repeatability of the same point of a spline)
of the third control point equals one, in the second case it is two and three in the
third case. The knot vectors for all three cases are as follows:

T1 ¼ 0; 0; 0; 0; 1; 2; 3; 4; 4; 4; 4f g
T2 ¼ 0; 0; 0; 0; 1; 2; 2; 3; 4; 4; 4; 4f g
T3 ¼ 0; 0; 0; 0; 1; 2; 2; 2; 3; 4; 4; 4; 4f g

1.3.3 Increasing Curve Control—NURBS

Ordinary B-splines, as discussed above, are a powerful tool in computer geometry
in their own right; however, they lack further flexibility due to the B-splines being
unable to exactly describe the curves in the family of conic sections (i.e., parts of
circles, ellipses, parabolas or hyperbolas). For this reason, the need arose to
rationalise B-splines by adding to each control point of a B-spline a new parameter
wi (the fourth coordinate), referred to as the weight. It allows an accurate deter-
mination of the effect of the control point. In the Cartesian coordinate system, such
an enriched control point can be written as:
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Pw
i ¼ wiPi ¼ wi

xi
yi
zi
1

8>><
>>:

9>>=
>>; ¼

wixi
wiyi
wizi
wi

9>>=
>>;

8>><
>>: ð1:20Þ

A rational form of a non-uniform B-spline (NURBS) that introduces
control-point weights is defined as:

P tð Þ ¼
Pn

i¼0 PiwiNi;k tð ÞPn
i¼0 wiNi;k tð Þ or ð1:21Þ

P tð Þ ¼
Xn
i¼0

PiRi;k tð Þ where : Ri;k tð Þ ¼ wiNi;k tð ÞPn
j¼0 wjNj;k tð Þ ð1:22Þ

It turns out that the weight wi affects the curve only locally, around the point Pi.
Increasing the value of the weight wi pulls the curve closer to the control point,
whereas decreasing it pushes it away from the control point. If all the weights are
assigned a value of 1, it yields an ordinary non-rational B-spline. Another special
case is when the value wi ¼ 0. In this case the control point Pi has no effect on the

Fig. 1.18 Effect of n-multiplicity of control points on the shape of a B-spline. Above: t3 ¼ 3;
Centre: t3 ¼ t4 ¼ 3; Below: t3 ¼ t4 ¼ t5 ¼ 3. Knot vectors have a different number of knots in
each case, but they are all over an interval 0; 4½ �
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curve. The effects of the value wi are shown in Figs. 1.19 and 1.20. The latter shows
how the different values of the weight wi define different types of conic sections.

1.3.4 Describing Surfaces

Describing the curves from the previous sections can be simply generalised into two
dimensions: a point on the surface P s; tð Þ is given by a biparametric function of the
parameters s and t. It consists of blending functions for each parameter.

Hence, a cubic Bézier surface is defined as:

P s; tð Þ ¼ P3
i¼0

P3
j¼0

Pij � Bi;3 sð Þ � Bj;3 tð Þ ð1:23Þ

Fig. 1.19 Effect of the parameter wi at the point Pi on the course of a NURBS curve [1]

Fig. 1.20 Adjusting the parameter wi allows an accurate description of different types of conic
sections by means of NURBS. The circle consists of three circular arcs [1]
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A total of 16 control points make up a control polyhedron, as shown in
Fig. 1.21.

Analogously to curves, the above definition can be extended to B-splines or
NURBS, where a control polyhedron from nþ 1ð Þ � mþ 1ð Þ control points takes
part:

P s; tð Þ ¼ Pn
i¼0

Pm
j¼0

Pij � Ri;k sð Þ � Rj;l tð Þ ð1:24Þ

1.3.5 B-spline Interpolation

When modelling complex curves or surfaces, presenting surfaces by means of
B-spline interpolations is particularly interesting if we are given a set of points over
which the finest possible curves or surfaces are to be stretched. Such a smooth
surface is sought when we record or scan a surface that is to be used for further
developments.

In the case of B-spline interpolations, the interpolation problem will be solved
when a set of given points can serve as a basis for the calculation or determining
such a set of control points that a B-spline will pass through. For cubic splines,
however, the problem is not uniquely solvable. This is discussed in more detail in
[4] and [7]. In our case we will only focus on some of the most useful examples.

The simplest option is for the knots to appear at exactly the same positions as
the interpolation points Xi. In this case we need to choose a value of the
parameter t at the knots—a procedure usually referred to as parameterisation. The
method of parameterisation slightly defines the shape of the curve between the
knots. For example, we can choose a uniform parameterisation (an example of a
knot vector: T ¼ 0; 0; 0; 0; 1; 2; . . .; 6; 6; 6; 6f g). However, it turns out that such a

Fig. 1.21 Bézier surface
with control points
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parameterisation will not yield an intuitively expected course of the curve. The
reason lies in the fact that such a method takes no account of the spatial distri-
bution of the points. Significantly better results are obtained if the parameteri-
sation takes account of the distances between the points. One such method is
cord-length parameterisation, where the differences between the values of the
parameter of consecutive knots are proportional to the distance between the
points.

Di
Diþ 1

¼ DXik k
DXiþ 1k k ð1:25Þ

The difference between two adjacent values of the parameter t1þ 1 � ti in the
knot vector is written as Di, whereas DXiþ 1 � DXik k represents the chord length
(‘air distance’) between two consecutive knots on the curve.

In some special cases a centripetal parameterisation yields even better results.
This can be written using the following equation:

Di
Diþ 1

¼ DXik k
DXiþ 1k k

h i1=2 ð1:26Þ

Figure 1.22 shows B-splines that interpolate the same data set. Three different
types of parameterisation were used. We can see that the choice of parameterisation
has a major effect on the shape of the curve between the interpolation points.

Our interpolation problem will be defined as follows. There is a given set of
space (interpolation) points X0; . . .;XL and a corresponding parameterisation (a set
of parameter t values in the knots t0; . . .; tL), and the number of control points is
larger than the number of interpolation points. Let us find the cubic B-spline P tð Þ,
defined by the same set of knots and unknown control points P�1; . . .;PLþ 1 so that
the following is true P tið Þ ¼ Xi.

It turns out that the set of control points can be defined by solving the following
(tri-diagonal) system of equations:

Fig. 1.22 Effect of parameterisation on the shape of a curve

24 1 Introduction to Freeform Surface Modelling



1 0 0 . . .
ai bi ci 0 . . .
0 aiþ 1 biþ 1 ciþ 1 0 . . .
. . .
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7777775
�
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. . .

. . .
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2
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3
7777775
¼

r0
r1
. . .
. . .
rL�1

rL

2
6666664

3
7777775

ð1:27Þ

where the coefficients ai; bi; ci are expressed with the following equations:

ai ¼ Dið Þ2
Di�2 þDi�1 þDi

ð1:28aÞ

bi ¼ Di Di�2 þDi�1ð Þ
Di�2 þDi�1 þDi

� �
þ Di�1 Di þDiþ 1ð Þ

Di�1 þDi þDiþ 1

� �
ð1:28bÞ

ci ¼ Di�1ð Þ2
Di�1 þDi þDiþ 1

ð1:28cÞ

In Eq. 1.28 it is necessary to take into account that the initial and the final
differences are D�1 ¼ DL ¼ 0. The values appearing on the right-hand side of the
1.27 system of equations have the following connection with the interpolation
points:

r0 ¼ P0 … point chosen according to the required tangent at the start of the
curve,

ri ¼ Di�1 þDið ÞXi,

rL ¼ PL … point chosen according to the required tangent at the end of the
curve.

The first and last control points are determined by the interpolation points, and
thus present no problem.

P�i ¼ X0;PLþ 1 ¼ XL ð1:29Þ

A question arises—how to define the second and the second-to-last points? To
do this requires the use of the so-called Bessel boundary condition, as it proved to
be the most useful. These particular points (the second and the second to last) are
defined by assuming a parabolic course of the curve through the first and the last
three points that make the parabolic function possible [4, 8]. With such a boundary
condition (Bessel boundary condition), the point P0 is determined as follows:

P0 ¼ d0 þ 1
3

� �
X0 þ 1

3d0
X1 � e20

3d0
X2 ð1:30Þ
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where d0 and e0 are defined by the equations:

d0 ¼ t2�t1
t2�t0

; and e0 ¼ 1:0� d0 ð1:31Þ

The second-to-last control point PL is determined by an analogous rearrange-
ment of Eqs. 1.30 and 1.31: (Fig. 1.23)

PL ¼ dL þ 1
3

� �
XL þ 1

3dL
XL�1 � e2L

3dL
XL�2 ð1:32Þ

where dL and eL are defined by the equations:

dL ¼ t2�t1
t2�t0

; and eL ¼ 1:0� dL ð1:33Þ

An example of parameterizing a curve and defining control points: As an
example, let’s take the following (planar) set of points, through which a curve shall
pass (Fig. 1.23):

X0 ¼ f0; 0; 0gT X1 ¼ f1; 1; 0gT X2 ¼ f2; 1; 0gT X3 ¼ f2:5; 0:5; 0gT
X4 ¼ f4; 2; 0gT

With such defined and selected points we can approach parameterization. For this
purpose, let’s calculate the distance between the points:

d1 ¼ 1:4142; d2 ¼ 1:0000; d3 ¼ 0:7071; d4 ¼ 2:1213:

The sum of distances is 5.2426. If the parameter t is to have value 0 at the
beginning of the curve and value 1 at its end, the distances should be normalized.

Fig. 1.23 Example of B-spline interpolation
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This can be achieved by dividing them with the cumulative length. Parameterization
now corresponds to the cumulative normalized distance:

t0 ¼ 0:0000; t1 ¼ 0:2698; t2 ¼ 0:6405; t3 ¼ 0:5954 t4 ¼ 1:0000

Let’s calculate the differences Di:

D�1 ¼ 0; D0 ¼ 0:2698; D1 ¼ 0:1907; D2 ¼ 0:1349; D3 ¼ 0:4046;
D4 ¼ 0:0

Let’s calculate the coefficients ai; bi; ci for an index of choice, e.g. i = 2:

a2 ¼ ðD2Þ2
D0 þD1 þD2

¼ 0:0306 ð1:34aÞ

b2 ¼
D2ðD0 þD1Þ
D0 þD1 þD2

� 	
þ D1ðD2 þD3Þ

D1 þD2 þD3

� 	
¼ 0:2452 ð1:34bÞ

c2 ¼
ðD1Þ2

D1 þD2 þD3
¼ 0:0498: ð1:34cÞ

The system of equations now reads:

1 0 0 0 0
0:0790 0:2593 0:1222 0 0

0 0:0306 0:2452 0:0498 0
0 0 0:2242 0:2816 0:0337
0 0 0 0 0

2
66664

3
77775 �
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P1

P2

P3

P4

2
66664

3
77775 ¼

0:25
0:53
0

8<
:

9=
;

0:46
0:46
0

8<
:

9=
;

0:65
0:33
0

8<
:

9=
;

1:35
0:27
0

8<
:

9=
;

3:50
0:75
0

8<
:

9=
;

2
66666666666666666666666664

3
77777777777777777777777775
ð1:35Þ

1.3 B-spline Curves and NURBS Curves and Surfaces 27



The point P0 was defined by means of Bessel boundary condition 1.30:

d ¼ t2 � t1
t2 � t0

¼ 0:4605� 0:2698
0:4605� 0:0000

¼ 0:4141; and � ¼ 1:0� d ¼ 0:5859

P0 ¼ 04714 � X0 þ 0:8049 � X1 � 0:2763 � X2

¼ 0:4714 � f0; 0; 0gþ 0:8049 � f1; 1; 0gT � 0:2763 � f2; 1; 0gT ð1:36Þ

Analogously, the second to last point P4 is added:
The solution of the system of equations:

P0 ¼ f0:2525; 0:5286; 0gT

P1 ¼ f0:7583; 0:0405; 0gT

P2 ¼ f1:9959; 1:2189; 0gT

P3 ¼ f2:7816;�0:1024; 0gT

P0 ¼ f3:500; 0:7500; 0gT

An example of surface interpolation as a bicubic B-spline: Similarly to
defining curve interpolation through space points, surface interpolation can be
defined as a bicubic B-spline (tensor product of a B-spline). The interpolation
problem can be formulated similarly to what we did for curves.

A set of space points Xij is given. They are organized in a rectangular
(orthogonal) scheme with dimensions (K + 1) � (L + 1). Also given is a corre-
sponding parameterization (a set of the parameter s values at knots s0,…,sK, and the
parameter t with knots t0,…,tL). The objective is to find the B-spline P(s,t), defined
by the same set of knots and unknown control points Pij, so that:

Pðsi; tjÞ ¼ Xij ð1:37Þ

Our algorithm is shown in Fig. 1.24. For each line of the data points Xi, two
boundary conditions shall be prescribed (Bessel, for example) and the interpolation
problem shall be solved, as was done for individual curves. This is followed by
solving the interpolation problem by columns, where additional points appear,
defining boundary conditions from the preceding phase. The resulting rectangular
scheme of control points defines the B-spline that interpolates the data set Xij.

The B-spline is defined by means of parameterization in the s- and t-direction.
Each line (s-direction) therefore requires the same parameterization. When inter-
polation points in individual lines (columns) in space are very unevenly distributed,
it is difficult to define the parameterization that would yield a satisfactory form of
interpolation in all parts of the bicubic spline.
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As an example, let’s take a (space) set of points (Table 1.1), through which a
surface shall pass (Fig. 1.25).

Define the first-phase parameterisation. The procedure is similar to that for a curve:

1. Calculating the distance between the points in lines;
2. Normalising the distances so that the parameter t assumes the value 0 at the

beginning of the curve and the value 1 at the end;
3. Calculating the mean value of the parameterisation according to the columns.

The results of the first-phase parameterisation are collected in Table 1.2.
Continue by following the scheme in Fig. 1.24. Calculate the control points for

three curves in the s-direction following the procedure described in the previous
example. The control points are given in Table 1.3.

The calculated control points are used as the input data for the algorithm used to
define the control points in the t-direction. The parameterisation in the second phase
is defined by the numerical values given in Table 1.4.

Table 1.1 Interpolation points Xij

Index i = 0 i = 1 i = 2 i = 3 i = 4

j = 0 0.0
0.0
0.0

1.0
1.0
0.0

2.0
1.0
0.0

2.5
0.5
0.0

4.0
2.0
0.0

j = 1 0.0
0.5
2.0

0.9
2.5
2.0

1.8
2.0
2.0

2.5
1.5
2.0

3.7
2.0
2.0

j = 2 0.0
0.0
4.0

1.0
0.8
4.0

2.0
1.0
4.0

3.0
0.7
4.0

4.0
0.0
4.0

Fig. 1.24 Diagram of the algorithm for defining a bi-cubic B-spline
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Table 1.3 Control points Pi;j after the first phase

Index i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 0 0.000
0.000
0.000

0.214
0.538
0.000

0.660
1.020
0.000

2.107
1.207
0.000

2.495
0.042
0.000

3.367
0.997
0.000

4.000
2.000
0.000

j = 1 0.000
0.668
2.079

0.186
2.164
2.079

0.622
3.625
2.079

1.723
2.299
2.079

2.589
1.559
2.079

3.216
1.833
2.079

3.599
2.296
2.079

j = 2 0.000
0.000
4.000

0.214
0.365
4.000

0.760
0.751
4.000

1.903
1.130
4.000

3.347
0.588
4.000

3.825
0.271
4.000

4.000
0.000
4.000

Fig. 1.25 Example of interpolation with a bi-cubic B-spline (surface)

Table 1.2 Parameterisation of a bi-cubic B-spline in the s-direction, first phase

Index i = 0 i = 1 i = 2 i = 3 i = 4

j = 0 0.000 0.270 0.460 0.595 1.000

j = 1 0.000 0.407 0.599 0.758 1.000

j = 2 0.000 0.281 0.504 0.733 1.000

Average 0.000 0.319 0.521 0.695 1.000

30 1 Introduction to Freeform Surface Modelling



At the end you will obtain the control points that are defined after the second
phase of the algorithm and given in Table 1.5. Figure 1.25 shows the data, the
calculated control points and the course of the surface in three-dimensional space.

1.4 Surface Interpolation with Boundary Curves

We have explained one of the methods for creating curves and surfaces, useful for
3D modelling. Below, a slightly different method will be presented. Instead of
describing the surfaces using control polygons, the definitions will fill the space
between the boundary curves. The techniques used in this process are named after
their authors, S. Coons and W. Gordon. Before describing them we shall introduce
an important part of their definition. In both cases it is based on a ruled surface.

Table 1.4 Parameterisation of a bi-cubic B-spline in the t-direction, second phase

Index j = 0 j = 1 j = 2

i = 0 0.000 0.500 1.000

i = 1 0.000 0.490 1.000

i = 2 0.000 0.483 1.000

i = 3 0.000 0.499 1.000

i = 4 0.000 0.514 1.000

i = 5 0.000 0.461 1.000

i = 6 0.000 0.416 1.000

Average: 0.000 0.480 1.000

Table 1.5 Control points Pi;j after the second phase

Index i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 0 0.000
0.000
0.000

0.214
0.538
0.000

0.660
1.020
0.000

2.107
1.207
0.000

2.495
0.042
0.000

3.367
0.997
0.000

4.000
2.000
0.000

j = 1 0.000
0.321
0.691

0.201
1.332
0.691

0.634
2.291
0.691

1.938
1.737
0.691

2.474
0.729
0.691

3.259
1.454
0.691

3.808
2.296
0.691

j = 2 0.000
0.668
2.079

0.186
2.164
2.079

0.622
3.625
2.079

1.723
2.299
2.079

2.589
1.559
2.079

3.216
1.833
2.079

3.599
2.296
2.079

j = 3 0.000
0.347
3.362

0.200
1.285
3.362

0.698
2.220
3.362

1.792
1.731
3.362

3.030
1.142
3.362

3.550
1.017
3.362

3.792
1.103
3.362

j = 4 0.000
0.000
4.000

0.214
0.365
4.000

0.760
0.751
4.000

1.903
1.130
4.000

3.347
0.588
4.000

3.825
0.271
4.000

4.000
0.000
4.000

1.3 B-spline Curves and NURBS Curves and Surfaces 31



1.4.1 Ruled Surface

Ruled surfaces are simple and form the basis for creating surface models. Their
boundary curves C1 sð Þ and C2 sð Þ are given in advance (Fig. 1.26). Let both be
defined over the same interval of the parameter s 2 0; . . .; 1½ �. The surface P s; tð Þ
should be found such that the following is true:

P s; t ¼ 0ð Þ ¼ C1 sð Þ;P s; t ¼ 1ð Þ ¼ C2 sð Þ ð1:38Þ

Of course the problem has many solutions. Let us try a linear interpolation
between both curves:

P s; tð Þ ¼ 1� tð Þ � C1 sð Þþ t � C2 sð Þ ð1:39Þ

To do this, linear blending functions f1 ¼ t and f2 ¼ 1� t were used. The
interpolation was performed by taking into account the whole space between the
entire C1 and C2 curves, not only the space between the discrete points. Some
authors call this process transfinite interpolation. It is also important that this
definition does not restrict the type of boundary curves. The first one can be a
B-spline, for example, and the other one a polyline or a section of an analytically
presented function. The shape of a ruled surface depends on the parameterisation of
both curves (Sect. 1.4).

1.4.2 Coons Patch

A ruled surface can only define an interpolation with two boundary curves, which
places a major restriction on defining freeform surfaces, which are usually defined
by four edges. For this reason we will expand our problem to four boundary curves,
as follows: C1 sð Þ;C2 sð Þ;C3 sð Þ and C4 sð Þ (Fig. 1.27).

Fig. 1.26 Ruled surface
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Let all of them be defined over the same interval of the parameters s 2 0; . . .; 1½ �
and t 2 0; . . .; 1½ �. The surface P s; tð Þ should be found so that the following is true:

P s; t ¼ 0ð Þ ¼ C1 sð Þ;P s; t ¼ 1ð Þ ¼ C2 sð Þ ð1:40Þ

P s ¼ 0; tð Þ ¼ C3 tð Þ;P s ¼ 1; tð Þ ¼ C4 tð Þ ð1:41Þ

Ruled surfaces were introduced in Sect. 1.4.1. Let us now try to use them as a
constituent part of a new definition:

Pruled; direction t s; tð Þ ¼ 1� tð Þ � P s; 0ð Þþ t � P s; 1ð Þ ð1:42Þ

Pruled; direction s s; tð Þ ¼ 1� sð Þ � P 0; tð Þþ s � P 1; tð Þ ð1:43Þ

However, it turns out that simply adding up two interpolate surfaces, defined by
two opposite curves, is not sufficient and wrong. Subtracted from the sum should be
the bilinear interpolation Pbiv s; tð Þ, defined by the corners of the surface under
consideration:

Pbiv s; tð Þ ¼ 1� s; s½ � P 0; 0ð Þ P 0; 1ð Þ
P 1; 0ð Þ P 1; 1ð Þ


 �
1� t
t

� �
ð1:44Þ

Finally, a Coons patch can be put together in the form of an equation:

P s; tð Þ ¼ Pruled; direction t s; tð ÞþPruled; direction s s; tð Þ � Pbiv s; tð Þ ð1:45Þ

or in expanded form:

P s; tð Þ ¼ 1� s; s½ � P 0; tð Þ
P 1; tð Þ

� �
þ P s; 0ð Þ P s; 1ð Þ½ � 1� t

t

� �

� 1� s; s½ � P 0; 0ð Þ P 0; 1ð Þ
P 1; 0ð Þ P 1; 1ð Þ


 �
1� t

t

� � ð1:46Þ

Fig. 1.27 Coons patch
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To create a ruled surface we used one of the simplest sets of blending functions.
These are linear functions f2 ¼ t and f2 ¼ 1� t. Other sets could also be used; the
cubic one, for example, f1 ¼ 1� tð Þ3 þ 3t 1� tð Þ2 and f2 ¼ 3t2 1� tð Þþ t3. The
advantage of the latter is shown in Fig. 1.28. Despite the curves C1a and C1b having
a continuous derivative to the point D, this is not true of the adjacent Coons
patches, when a set of linear blending functions is used (Fig. 1.28a). Figure 1.28b
shows adjacent Coons patches with this cubic set of blending functions.

1.4.3 Gordon Patch

A Gordon patch is a generalisation of a Coons patch. Its concept was developed by
William J. Gordon around 1970, while working for General Motors Research Labs.
He was dealing with the problem that often not only four boundary curves are
given, but also a mesh nþ 1ð Þ � mþ 1ð Þ of curves. Such a mesh can usually be
obtained by means of 3D-recording or mechanical measuring with the use of
contact or non-contact measuring devices (Fig. 1.29).

A Gordon patch is therefore aimed at defining freeform surfaces when a data
structure with the nþ 1ð Þ � mþ 1ð Þ system of curves is given. The problem can be
formulated with given curves:

Cs;0 sð Þ;Cs;1 sð Þ; . . .;Cs;n sð Þand Ct;0 tð Þ;Ct;1 tð Þ; . . .;Ct;m tð Þ

Let both sets be defined over the same interval of the parameter s 2 0; . . .; 1½ �
and t 2 0; . . .; 1½ �. The surface P s; tð Þ should be found such that the following is
true:

Fig. 1.28 Adjacent Coons
patches using: a set of linear
blending functions (above),
and a set of cubic blending
functions (below)
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P s; tið Þ ¼ Cs;i sð Þ where i ¼ 0; . . .; n ð1:47Þ

P si; tð Þ ¼ Ct;i tð Þ where i ¼ 0; . . .;m ð1:48Þ

The idea is similar to that for a Coons patch: first, find the constituent part
Pdirectt s; tð Þ that allows the interpolation of one family of iso-parametric curves in
the direction t. This is followed by finding the other constituent part Pdirects s; tð Þ. At
the end, add the two parts together and subtract the interpolant that includes the
corners Piv s; tð Þ.

To define a ruled surface, linear blending functions f1 ¼ t and f2 ¼ 1�t were
used. With more edges, a higher-order polynomial interpolation such as a Lagrange
polynomial can be used:

Lmi sð Þ ¼
Qm

j¼0j 6¼0
s�sjð ÞQm

j¼0j 6¼0
si�sjð Þ ð1:49Þ

The first and the second constituent parts can now be generalised into:

Pdirection s s; tð Þ ¼ Pm
i¼0

P si; tð ÞLmi sð Þ ð1:50aÞ

Pdirection t s; tð Þ ¼ Pn
j¼0

P s; tj
� �

Lnj sð Þ ð1:50bÞ

The third constituent part is:

Piv s; tð Þ ¼ Pm
i¼0

Pn
j¼0

P si; tj
� �

Lmi sð ÞLnj tð Þ ð1:51Þ

Fig. 1.29 Gordon patch interpolating a mesh of curves
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And finally, the Gordon patch is:

P s; tð Þ ¼ Psmers s; tð ÞþPsmert s; tð Þ � Piv s; tð Þ ð1:52Þ

The Gordon patch concludes the presentation of mathematical formulations that
present a significant basis for the modelling of bodies in space. A detailed study of
special surfaces and the shapes of bodies requires additional skills in advanced
mathematics. Below, we would like to present the application of the
above-presented modelling and designing knowledge in practical use, as top
designing and shaping can only be achieved through a simultaneous understanding
of the mathematical background of modelling, physical, technological and ergo-
nomic properties, and the rules of materials and the environment.

1.5 Continuity of Curves and Surfaces

So far, enough knowledge has been acquired to explain a few examples, referring to
the continuity of curves and geometries in engineering graphics (modellers). An
accurate description of the continuity of curves and surfaces is important not only
for the reasons of how a surface or a curve looks, but also because of the design
requirements. We have seen that curves follow certain laws of physics (load, torque,
fluid flow, etc.). If our products are to successfully perform their function on the
basis of the selected physical conditions, such curves should be selected so that they
correspond to the relevant laws of physics. It is of utmost importance to provide
adequate transitions between the curves and the surfaces. In connection with
transitions, we will come across several terms that can cause considerable confusion
among the users of modellers with no prior theoretical knowledge. In this part of the
chapter we will come across a variety of definitions, such as curve curvature,
parametric continuity and the geometric continuity of curves.

1.5.1 Normal Vector and Curvature

Understanding the definitions of the normal vector and curve curvature is essential
for an understanding of curve continuity.

Normal vector: Let us suppose a fixed point P tð Þ, a variable point T on its left,
and a variable point Q on its right. All of them are on a parametric curve and they
uniquely define a plane. When T and Q are approaching P tð Þ, the plane approaches
its final position, where it becomes a tangent plane to the curve at the point P tð Þ. On
the tangent plane at point P tð Þ also lies the curve tangent at this point. The tangent
plane is the plane that passes through P tð Þ and involves both P0 tð Þ and P00 tð Þ. In
general terms, it can be said that the following equation is true for a given point on
this plane, where p and q are parameters.
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P tð Þþ pP0 tð Þþ qP00 tð Þ ð1:53Þ

A bi-normal vector B tð Þ is a unit vector obtained from the vector product P0 tð Þ
and P00 tð Þ:

B tð Þ ¼ P0 tð Þ�P00 tð Þ
P0 tð Þ�P00 tð Þj j ð1:54Þ

The equation above makes it clear that the bi-normal vector B tð Þ is orthogonal to
both P0 tð Þ and P00 tð Þ and consequently also orthogonal to the tangent plane. The line
where the points P tð Þþ tB tð Þ lie is therefore a bi-normal line at point P tð Þ.

A normal vector is a vector that is orthogonal to both the tangent and the
bi-normal vector. Its direction can be defined by the right-handed system. The unit
normal vector N tð Þ can be defined with the following equation:

N tð Þ ¼ B tð Þ�P0 tð Þ
B tð Þ�P0 tð Þj j ð1:55Þ

The mutual positions of the tangent, bi-normal and normal vectors at a given
point on the curve are shown in Fig. 1.30. It should be pointed out that the tangent,
normal and P00 tð Þ vectors all lie on the same plane.

Curvature: The easiest way to explain the notion of the curvature of a curve is
with the following interpretation: Let us suppose that P tð Þ is any fixed point on a
curve and the points T and Q are variable points to the left and to the right of P tð Þ
on the curve. These three points uniquely define a circle as long as they are lying on
the same line (i.e., they are not collinear). When the points T and Q get close to the
point P tð Þ, the circle defined by these three points reaches its final radius r and the
centre position S (Fig. 1.31, dotted line). Such a circle is referred to as the circle of
curvature at point P tð Þ. Consequently, the more the curve is bent—the larger the
curvature and the smaller the radius of the circle of curvature at the point P tð Þ.
Mathematically this is written as:

Fig. 1.30 Mutual positions
of the tangent, bi-normal and
normal vectors at a given
point on the curve
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jP tð Þ ¼ 1
rP tð Þ ð1:56Þ

Analogously, the larger the radius of curvature at the point P tð Þ the smaller the
curvature. Hence, you can imagine a straight line (line segment) as a curve with an
infinitely large radius of the circle of curvature.

Since three non-collinear points in space uniquely define a plane in space, the
circle of curvature at the point P tð Þ also lies on this plane. It is also true that this
plane is tangential to the curve at the point P tð Þ. As we know from the definition of
the tangent plane, the circle of curvature lies on the tangent plane. Because the
circle of curvature is tangent to the curve and as such also to the curve tangent, it
means that the centre of the circle of curvature is in the direction of the normal to
the curve.

Hence, the curvature j at the parameter t on the curve P tð Þ can be calculated
using the equation:

j tð Þ ¼ P0 tð Þ�f 00 tð Þj j
P0 tð Þj j3 ð1:57Þ

1.5.2 Parametric Continuity

Parametric continuity refers to parametric curves and describes the smoothness of a
parameter along the curve.

A curve has the parametric continuity Cn when the n-th derivative of the
function describing the curve is continuous along the entire curve.

dnP tð Þ
dtn

ð1:58Þ

Fig. 1.31 When the points T
and Q move close to the point
P tð Þ, the circle that is
uniquely defined by the points
approaches its final size and
position, the circle of
curvature, defined by its
centre S and radius r
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The most characteristic orders of parametric continuity are:

• C�1 Curves are discontinuous
• C0 Curves are continuous—they share common end-start points
• C1 First derivatives are continuous.
• C2 First and second derivatives are continuous
• Cn First through n-th derivatives are continuous

Problems with parametric continuity: Parametric continuity Cn generally
allows an excellent definition of the continuity of two curves at a contact point, but
not in all cases. Let us take an example of the two straight lines in Fig. 1.32,
described by the Eq. 1.55, where T1, T2 and T3 are collinear points in space.

f uð Þ ¼ T1 þ u T2 � T1ð Þ ð1:59aÞ

g vð Þ ¼ T2 þ v T3 � T2ð Þ ð1:59bÞ

When a normalized parameter u (and analogously v) travels from 0 to 1 it is
obvious that the curves have continuity C0 (they are in contact at the point T2). The
question arises whether the curves also provide continuity C1:

f 0 uð Þ ¼ T2 � T1 ð1:60aÞ

g0 vð Þ ¼ T3 � T2 ð1:60bÞ

Consequently, f 0 uð Þ ¼ T2 � T1 generally does not equal g0 vð Þ ¼ T3 � T2. As a
result, these two curves do not provide C1 continuity at the point T2; however,
Fig. 1.32 can raise doubts that this is not true in this case. A solution is possible if
the direction vectors T1 − T2 and T2 − T3 are replaced by their unit vectors and
change the area of the parameters u and v. It results in the following two equations:

F uð Þ ¼ T1 þ u ðT2�T1Þ
T2�T1j j ð1:61aÞ

G vð Þ ¼ T2 þ v ðT3�T2Þ
T3�T2j j ð1:61bÞ

where the parameter u runs over an interval 0 to T2 � T1j j and the parameter v over
an interval 0 to T3 � T2j j. Because F0 uð Þ ¼ G0 vð Þ ¼ unitvector in the direction

Fig. 1.32 Continuity of two coaxial lines. In order to prove their C1 and C2 continuity at the
common point, the equations of the lines should be re-parameterised accordingly
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from T1 to T3, it means that the curves are C1 continuous. The process of
parameterisation that was used, therefore makes solving this problem possible.

Let us take a look at another example where the parameters u and v (Eq. 1.58)
run over an interval 0; 1½ � as shown in Fig. 1.33.

f uð Þ ¼ � cos u2 p
2

� �
; sin u2 p

2

� �
; 0

� � ð1:62aÞ

g vð Þ ¼ sin v2 p
2

� �
; cos v2 p

2

� �
; 0

� � ð1:62bÞ

The function f uð Þ over an interval 0 to 1 describes the left part of the circular arc
in Fig. 1.33. Similarly, the function g vð Þ over an interval from 0 to 1 describes the
right part of the circular arc. The curves are in contact at the point
T1 ¼ 0; 1; 0ð Þ ¼ f 1ð Þ ¼ g 0ð Þ. The calculation follows:

f 0 uð Þ ¼ pu sin u2
p
2

� �
; pu cos u2

p
2

� �
; 0

� �
f 00 uð Þ ¼ p2u2 cos u2

p
2

� �
;�p2u2 sin u2

p
2

� �
; 0

� �
f 0 uð Þ � f 00 uð Þ ¼ 0; 0;�p3u3

� �
f 0 uð Þj j ¼ pu

f 0 uð Þ � f 00 uð Þj j ¼ p3u3

j uð Þ ¼ 1

g0 vð Þ ¼ pv cos v2
p
2

� �
;�pv sin v2

p
2

� �
; 0

� �
g00 vð Þ ¼ �p2v2 sin v2

p
2

� �
;�p2v2 cos v2

p
2

� �
; 0

� �
g0 vð Þ � g00 vð Þ ¼ 0; 0;�p3v3

� �
g0 vð Þj j ¼ pv

g0 vð Þ � g00 vð Þj j ¼ p3v3

j vð Þ ¼ 1

Fig. 1.33 Continuity of two sections of a circular arc
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It should be noted here that both g0 0ð Þ and g00 0ð Þ are zero vectors, and as such
their direction at this point is not clearly defined. Consequently, it is not possible to
make conclusions about the curve’s continuity properties at the point of contact,
although Fig. 1.33 makes it seem that there is some continuity between both curves
at the point of contact, and that they obviously have a common tangent.

Let us try to solve the problem again by means of parameterisation, i.e., by
modifying their parametric equations, without changing their forms, the same as we
did in the previous case. In the equation f uð Þ replace u2 ¼ p, and in the equation
g vð Þ replace v2 ¼ q. This results in:

f pð Þ ¼ � cos p
p
2

� �
; sin p

p
2

� �
; 0

� �
g qð Þ ¼ sin q

p
2

� �
; cos q

p
2

� �
; 0

� �

Their derivatives are as follows:

f 0 pð Þ ¼ p
2
sin p

p
2

� �
;
p
2
cos p

p
2

� �
; 0

� �

f 00 pð Þ ¼ p
2

� �2
cos p

p
2

� �
;� p

2

� �2
sin p

p
2

� �
; 0

� 	

g0 qð Þ ¼ p
2
cos q

p
2

� �
;� p

2
sin q

p
2

� �
; 0

� �

g00 qð Þ ¼ � p
2

� �2
sin q

p
2

� �
;� p

2

� �2
cos q

p
2

� �
; 0

� 	

f 0 pð Þ � f 00 pð Þ ¼ g0 qð Þ � g00 qð Þ ¼ 0; 0;� p
2

� �3
� 	

f 0 pð Þ � f 00 pð Þj j ¼ g0 qð Þ � g00 qð Þj j ¼ p
2

� �3

f 0 pð Þj j ¼ g0 qð Þj j ¼ p
2

j pð Þ ¼ j qð Þ ¼ 1

After changing the variables, the following is true f 0 1ð Þ ¼ g0 0ð Þ ¼ p=2; 0; 0ð Þ.
And so it can be said that the curves have continuity C1. Let us take a look at their
other derivatives: f 00 1ð Þ ¼ g00 0ð Þ ¼ 0;� p=2ð Þ2; 0ð Þ, which means that they also
provide continuity C2. What is more, due to the continuity along the entire curve 1,
it is possible to claim that the curves also have a continuous curvature (which makes
sense as they are part of a circle).

These two examples have shown that the choice of parameterisation
(re-parameterisation or changing the variables) has a significant effect on the con-
tinuity of curves. Consequently, a mathematical determination of the continuity can

1.5 Continuity of Curves and Surfaces 41



always throw the calculated results into doubt. The solution, shown in previous
subchapters, is to use the arc length.

Let a curve have an arc length s. The curve can be so parameterised that the point
f uð Þ is on the curve that is separated by the arc length u from the initial point of the
curve f 0ð Þ, with u lying in the interval from 0 to s. By means of parameterisation
using the arc length, where u travels from 0 to s, f uð Þ travels along the curve from
f 0ð Þ to f sð Þ at the same ‘speed’. As a result, the tangent vector measuring the speed
is of unit-length. Many equations can be simplified in this manner.

Despite re-parameterisation by the arc length (an alternative term is natural
parameterisation) looking, at least in theory, a simple and elegant method, it is
often demanding and unpractical because defining arc lengths requires the inte-
gration of functions and the use of square roots.

1.5.3 Geometric Continuity

It has been shown that in some cases it is difficult to determine the parametric
continuity of curves. Many of the C1 continuous curves have continuous curvature,
but lack C2 continuity at the point of contact, and some of them are not double
differentiable. However, these curves appear smooth at the points of contact and
also at the transitions from one section to another. After changing a variable, some
of these curves even become C2 continuous at the points of contact, as shown
earlier in this chapter. The problem is that it is sometimes difficult to find an
appropriate re-parameterisation procedure that makes this possible. This was the
reason for defining the geometric continuity, as it slightly relaxes the requirements
for C2:

Two sections of naturally parameterised curves are Gk geometric continuous at the joining
point if and only if all the left and right i-th derivatives match for each i� k.

Although the above definition requires parameterisation by the arc length, the
one below, which is an equivalent definition, does not require it.

Two sections of curves are Gk geometric continuous at the joining point if and only if two
parametrisations exists, one for each curve segment that all the left and right i-th derivatives
match for each i� k.

This definition is already better, but still not good enough, as we often do not
know how to find an appropriate parameterisation. Fortunately, designing and
modelling is mainly only about the cases when k ¼ 1 and k ¼ 2.

Let us first define the continuity G1:

Two G0 continuous curve sections are G1 geometric continuous if and only if the vectors
f 0 uð Þ and g0 vð Þ have the same direction at the joining point, and f 0 uð Þ and g0 vð Þ are
evaluated at the joining point.
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Let us point out again here that it is not enough if the curve sections share the
same tangent at their common point; their tangent vectors also need to have the
same direction. To be more precise, two curve sections sharing a common tangent
are not yet G1 continuous at a common point. For a better understanding, let us take
a look at Fig. 1.34.

In Fig. 1.34 the curves f uð Þ and g vð Þ are in contact at the common point f 1ð Þ ¼
g 0ð Þ and share a common tangent. However, the tangent vectors of both curves
point to the opposite direction and, consequently, the curves are not G1 continuous
at this point. In contrast to that, the examples in Fig. 1.32 and 1.33—according to
the same definition—exhibit G1 continuity at the points of contact, despite the
initial calculations not showing C1 continuity.

Gregory Nielson gave a simple definition of G2 continuity:

Two C1 continuous curve sections are G2 geometric continuous at the joining point if and
only if the vector f 00 uð Þ�g00 vð Þ is parallel to the tangent vector at the joining point, and
f 00 uð Þ and g00 vð Þ are evaluated at the point of contact.

An advantage of such a definition of G2 continuity is its independence from the
selected parameterisation; it is only necessary to verify the C1 continuity in
advance.

Let us take a look at another example of Nielson’s definition: Let us take two
parabolas with a joining point at 0; 1; 0ð Þ. The parabolas are described by the
following equations as shown on Fig. 1.35:

f uð Þ ¼ �1þ u2; 2u� u2; 0
� �

g vð Þ ¼ 2u� u2; 1� u2; 0
� �

Both curves are within the normalized interval 0; 1½ �, while the joining point is
f 1ð Þ ¼ g 0ð Þ ¼ 0; 1; 0ð Þ.

Fig. 1.34 Curves with a
common tangent, but tangent
vectors in the opposite
direction, which makes the
curve not G1 continuous
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The basic calculations follow:

f 0 uð Þ ¼ 2u; 2� 2u; 0ð Þ
f 00 uð Þ ¼ 2;�2; 0ð Þ

f 0 uð Þ � f 00 uð Þ ¼ 0; 0;�4ð Þ
f 0 uð Þj j ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2uþ 2u2

p
f 0 uð Þ � f 00 uð Þj j ¼ 4

j uð Þ ¼ 1

2 1� 2uþ 2u2ð Þ1:5
g0 vð Þ ¼ 2� 2v;�2v; 0ð Þ

g00 vð Þ ¼ �2;�2; 0ð Þ
g0 vð Þ � g00 vð Þ ¼ 0; 0;�4ð Þ
g0 vð Þj j ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2vþ 2v2

p
g0 vð Þ � g00 vð Þj j ¼ 4

j vð Þ ¼ 1

2 1� 2vþ 2v2ð Þ1:5

Calculating f 0 1ð Þ ¼ g0 0ð Þ ¼ 2; 0; 0ð Þ shows that the curves are C1 continuous at
the joining point. Since f 00 1ð Þ ¼ 2;�2; 0ð Þ is not equal to g00 0ð Þ ¼ �2;�2; 0ð Þ,
they are not C2 continuous; however, as the values of both curves’ functions of
curvature at the point of contact are identical kf uð Þ ¼ kg vð Þ ¼ 1, we can see that
they have continuous curvature at the said point.

Let us verify now G2: with C1 continuity at the joining point having been
confirmed, we can move on. Let us first calculate f 00 1ð Þ � g00 0ð Þ ¼ 4; 0; 0ð Þ. The
tangent vector can be calculated from f 0 1ð Þ ¼ 2; 0; 0ð Þ. We can see that both vectors
are parallel at the joining point and referring to Nielson’s definition the said curves
are G2 continuous at this point.

Fig. 1.35 Continuity of two
parabolas with joining point at
0; 1; 0ð Þ
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According to the definition of the Gk order of continuity, explained above, it
would be possible to find two such parameterisations of both curves for which C2

continuity could be proved.
Due to all the above-described characteristics, geometrical continuity is very

suitable for defining the continuity of implicit functions, such as conic sections (i.e.,
the curves generated when a plane cuts through a cone: a circle, an ellipse, a
parabola, a hyperbola), and the continuity of other curve shapes that cannot be or
are difficult to differentiate several times, such as a line (which can also be referred
to as a circle with an indefinite radius).

To sum up some of the most characteristic orders of the geometric conti-
nuity of curves that we come across in design and modelling:

• G0 curves meet at the point of contact
• G1 curves have the same tangent direction at the point of contact
• G2 curves have the same tangent direction and centre of curvature at the point of

contact.

1.5.4 Practical Aspect of Continuity for Designing
and Modelling

It should be clear by now that continuous, smooth transitions require at least G1

continuity. For practical, physical and aesthetic reasons—for example, in aero-
nautical, car and nautical industries, and elsewhere—higher-order continuities
should be provided. General command settings for edge blending between different
CAD model surfaces, e.g., fillets, provide G1 continuity. In order to have G2

continuity, it usually needs to be explicitly specified in the settings. G2 transitions
can be edited later and they are usually based on cubic curves, explained earlier in
this chapter.

Visual control can be of great assistance in the CAD modelling of suitable
transitions. The surface of a car body, for example, will not look smooth without
having at least G2 continuous transitions. This makes the visual control of surface
transitions in modellers an important part of providing appropriate continuity of
transitions, and as such, it is supported in modellers by a variety of visualisation
tools for a better impression. Throughout this book, the reader will be made familiar
with these tools. The most typical ones are shown in Fig. 1.36. For curve curvature
control, curvature combs are used. By means of line segments, orthogonal to a
curve, they visualize the relative value of the curvature k at individual points on the
curve. Also by means of visualisation tools, it is possible to define the position of
the inflection point, as well as the point on a curve with the smallest circle of
curvature.

Visual inspection of surface continuity of CAD objects can be performed in the
first step by inspecting the model itself, especially its edges and the transitions
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between surfaces. Creating high-resolution renders can also be of some assistance.
Figure 1.37 shows a model with three different transitions between three surfaces.
On the left you can see a model where only surfaces meet, i.e., at a G0 continuity.
At the centre there is a model with a constant radius blending, i.e., at a G1 conti-
nuity between the blending and the nearby upper surfaces. On the right is a model
where the transition between two surfaces is achieved by the cubic function that
allows G2 curvature continuity between two surfaces. Although a screen image in
the modeller displays almost no difference between the models at the centre and on
the right, the difference—especially with objects from nature with smooth reflecting
surfaces—can be very obvious. For this reason, advanced modellers feature tools
that simulate reflections of different, usually zebra patterns from the environment.
Figure 1.37 shows different reflections of the same zebra pattern for different
transitions. Zebra stripes on the surfaces of G0 transitions do not meet at the contact
between two surfaces. In G1 transitions the stripes meet; however, they form sharp
transitions. Only G2 transitions provide smooth transitions from one surface to the
other. This tool allows an excellent overview of surface continuity on the edges;
however, it provides no information about the size of curvature at any point on the
surface. When such information is required, the tool for colour mapping of the
radius of curvature on the surface should be applied. Using a colour scale, it colours
the CAD model’s surfaces according to their radius of curvature at a given point.
Figure 1.37 shows that flat surfaces are coloured black, whereas other parts are
coloured according to their respective curvatures. Hence, constant radius blendings
(centre below) are coloured evenly with one colour, whereas the blendings with
continuous curvature are shading from the colour of the first adjacent surface via a
variety of green intensities into the colour of the next surface. Besides pattern- and
colour-mapping of the curvature, modern modellers also allow collecting infor-
mation on the curvature j and the radius of curvature r at any given discrete point
on the surface.

Fig. 1.36 Visualisation tools for curve curvature and curve continuity control in the SolidWorks
modeller: a showing the inflection point, b position and size of the largest curvature, c curvature
combs
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1.5.5 Surface Classes

Any engineer or experienced CAD modeller user will sooner or later come across
the terms Class A, Class B and Class C surfaces. The term originated in the car
industry and different car manufacturers’ internal standards. Consequently, there is
no standard definition of the classes; instead, there are several different
interpretations.

In the broadest sense, the definition says:

• Class A: Visible surfaces of a product, requiring the highest aesthetic level, such
as a car bonnet, headlight glass, etc.

Fig. 1.37 CAD model with G0, G1 and G2 transitions between a model’s upper surfaces.
Transitions can be analysed by means of projecting patterns or colour mapping the surfaces
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• Class B: Visible surfaces of a product, not requiring the highest aesthetic level,
such as car wheel nut holes, door openings, etc.

• Class C: Non-visible surfaces and parts of a product, such as a car seat
mounting, spare wheel space, etc.

This allows industrial and mechanical designers to define what surfaces need to
remain unchanged during detailed design and which ones can be adjusted in order
for the product to achieve its full functionality and visual appeal. This is particularly
important when a parent company leaves a product or a subassembly to a sub-
contractor for final development and manufacturing. Companies can of course lay
out additional details and define, by prescribed tolerances, various surface classes,
so that they are in accordance with their aesthetic, design and technological
standards.

Because of the inconsistent classification of surface classes it is recommended to
use the terms Class A, Class B and Class C only for communication within a
company and under the condition that everyone involved is familiar with the
internal standardization of surfaces inside the particular company. When out-
sourcing development, it is recommended to set out in advance the common rules
that apply to individual surfaces.

For general use, it is strongly discouraged to use surface classes. Instead, it
is recommended to define surfaces by referring to parametric Ck or geometric
Gk continuities, as they are mathematically accurately defined.
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