Exercise: Jack

Purpose :create an animated sketch

1 Draw the jack diagram

- Create the diamond: Parallelogram cone

- Add the 2 vertical lines; one above the diamond the other below by filling in the boxL :at 20 mm .
- Add the 3 horizontal lines

2 Dimension the height of the jack double click on the dimension and check the box:Measure(dimension resulting from a measurementitis variable). It is in brackets.

3 Put the dimension of 70 (length of the screw-nut system) and deactivate it; right click then expand the last line: Object Distance.xx, andDisable(inoperative).

4 Add the dimensions and then the relations between dimensions:

- Right-click on the dimension of the top vertical line, expand the last line:Object length. $\mathbf{x x}$, to selectEdit formula.The dimension of the top vertical line 'driving dimension'will be equal to that of the bottom line'driving dimension'

The driven dimension appears on the
1 timeline followed by $=$,
on the 2thline will appear the driving dimension. Click on the dimension which will be the driving dimension: here the dimension of 20 at the bottom.

The symbol $\boldsymbol{f}(\boldsymbol{x}$)appears next to the dimension

Remark: optionally add operations,$+ /$, * and numbers or other dimensions to create a formula.

5 Complete the constraints by selecting the top horizontal line and the upper point of the top vertical line then add constraints and check: CoincidenceandEnvironmentso that the line is distributed symmetrically on both sides of the vertical line.

- Do the same with the bottom seat.
- Dimension the length of the sides of the diamond to 50 mm so that it does not vary during the animation.
- Fix the bottom line which is the support on the ground: constraintFixedchecked.

6 Check operation manually by dragging a line.
The sketch animates and the height dimension changes.

7 Animate the sketch automatically:

- Reactivate 70mm dimension
- Select the dimension to animate here the dimension of 70 then the icon Constraint Animation:
from the Constraint toolbar

The Constraint Animation dialog box appears. Enter the limit values 30 and 95 as well as the number of steps: 50.

- Animate the constraint by clicking onWalking then onLoop
Contraintes cachées
Annuler

round trip:shows the animation from the first to the last value then in reverse.

loop:shows the animation from the first value to the last value then in the opposite direction, continuously.
- Watch the evolution of the height measurement dimension.
- Change animation options: check or uncheckHidden constraints

Application

- Realize the diagram of a connecting rod crank system; use the shift 20mm function and the iconAutomatic Constraints
to get the thickness. Select the angle value, i.e. 75

Click the Stress Animation icon
Indicate the maximum and minimum values of the constraint. For example, enter 0 and 360 degrees respectively

CatiaV5

