

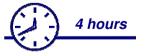
Student Notes:

Realistic Shape Optimizer

Version 5 Release 19 January 2009 EDU_CAT_EN_RSO_FF_V5R19

Copyright DASSAULT SYSTEMES

Student Notes:


About this course

Objectives of the course

Upon completion of this course you will be able to: - Deform a surface using the Displacement file resulting from Finite Element Analysis

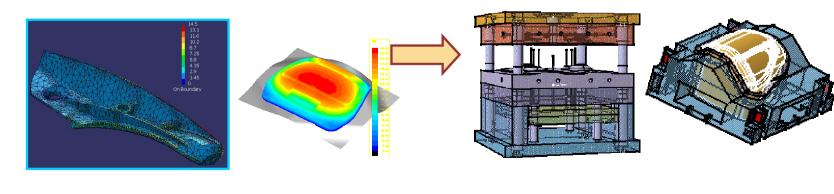
Targeted audience Surface designers, Tooling designers

Prerequisites Students attending this course should be familiar with the basics of wireframe and surfaces creation

Student Notes:

Table of Contents					
	Inti	roduction to Realistic Shape Optimizer			
	۲	Why Do You Need RSO?			
	۲	Warning			
	۲	Accessing the Workbench			
¢	Su	rface Deformation			
	۲	Digitized Morphing: Inputs			
	۲	Displacement Files			
	۲	User Interface			
	۲	Update Digitized Morphing			

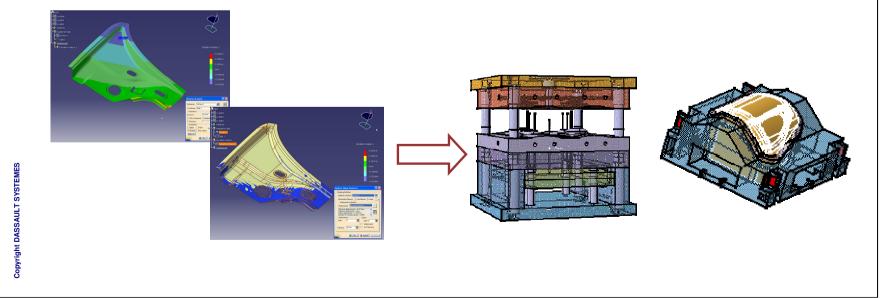
Student Notes:


Introduction to Realistic Shape Optimizer In this lesson, you will become familiar with RSO basics. 10.2 8.7 7.25 5.8 4.35 2.9 1.45

Copyright DASSAULT SYSTEMES

Student Notes:

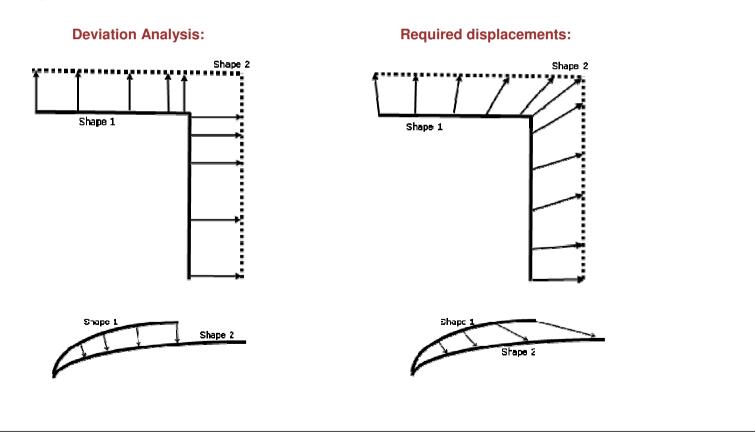
Why Do You Need RSO? (1/2)


- Context 1: Use results of a finite element analysis (FEA)
 - A design part has been analyzed by a finite element method.
 - The finite element method outputs a description of the part deformation.
 - The deformation has to be applied to the CAD part to get the corresponding deformed CAD part.
- Examples:
 - Injection simulation for the computation of shrinkage: the shrinkage is evaluated by finite element methods and has to be compensated when designing the mold.
 - Computation of spring-back: spring-back can be evaluated by a finite element simulation and needs to be compensated at the die face design level.
 - Propellers or turbine blades are designed in use (movement, temperature...) by specialized software, their shape when still at ambient temperature has to be found at production stage.

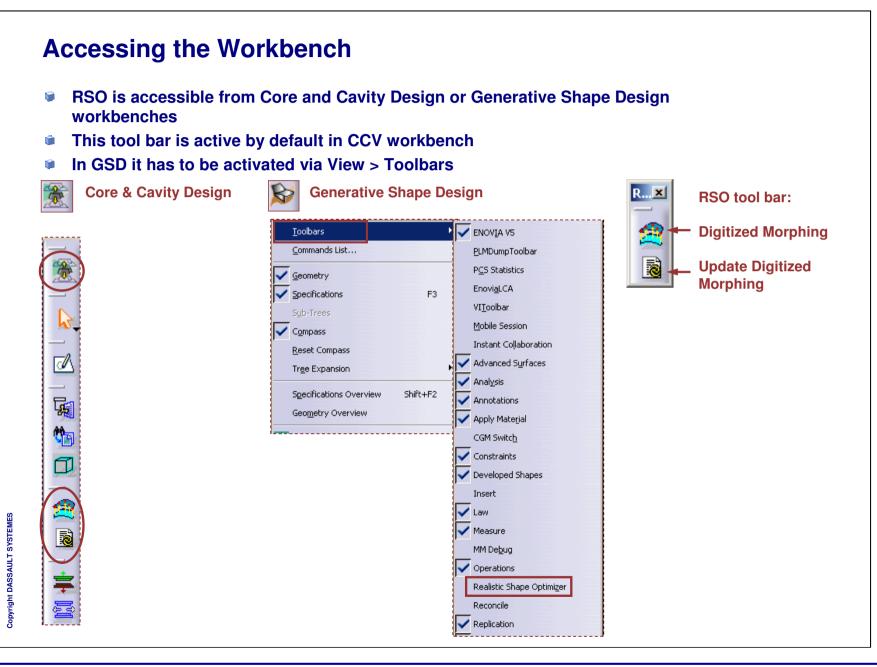
Student Notes:

Why Do You Need RSO? (2/2)

- Context 2: Use results of a deviation analysis
 - A reference part is available in CATIA
 - A prototype or sample has been manufactured
 - The manufactured part is compared to the reference part by Deviation Analysis
 - Requires the use of CATIA Quick Surface Reconstruction workbench (QSR)
 - A CAD model of the real part is required
- Examples:
 - Integration of real part in digital mock-up for further analysis
 - Tuning of tooling (specially stamping dies)

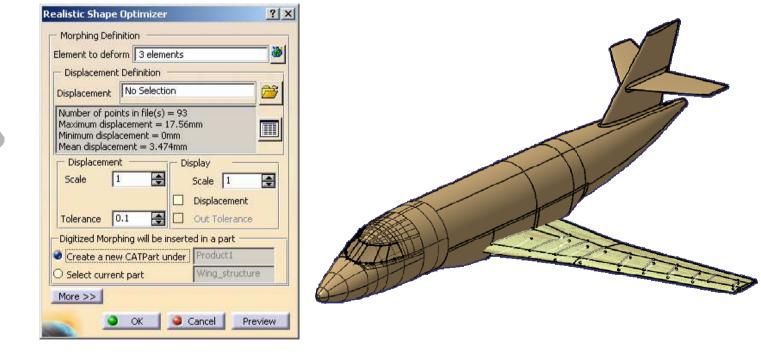


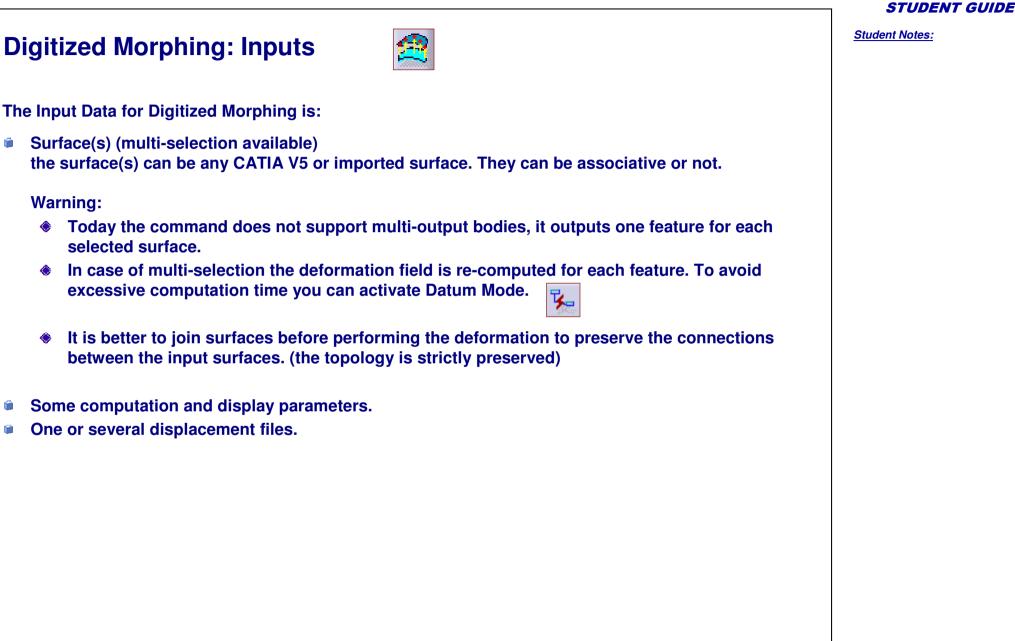
Student Notes:


WARNING

A Deviation Analysis is not an exact representation of a deformation !

The displacements created by a Deviation Analysis between two shapes are different from the displacements to apply to transform a shape into the other one, especially when the initial shape presents sharp edges or curvature variations or when the deformation includes a "stretching" of the initial shape.


Student Notes:

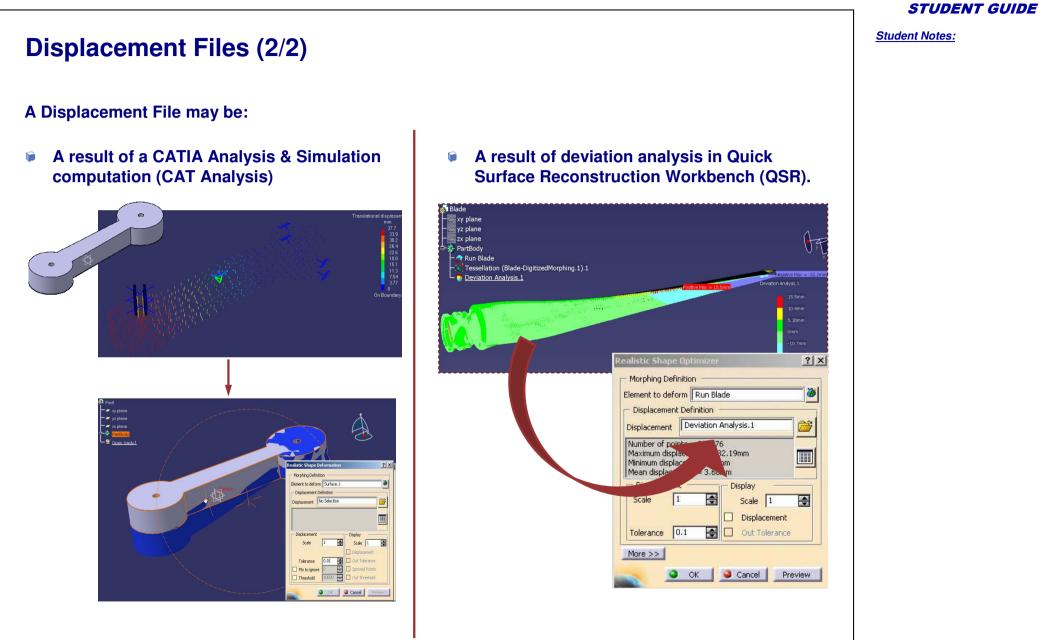

Student Notes:

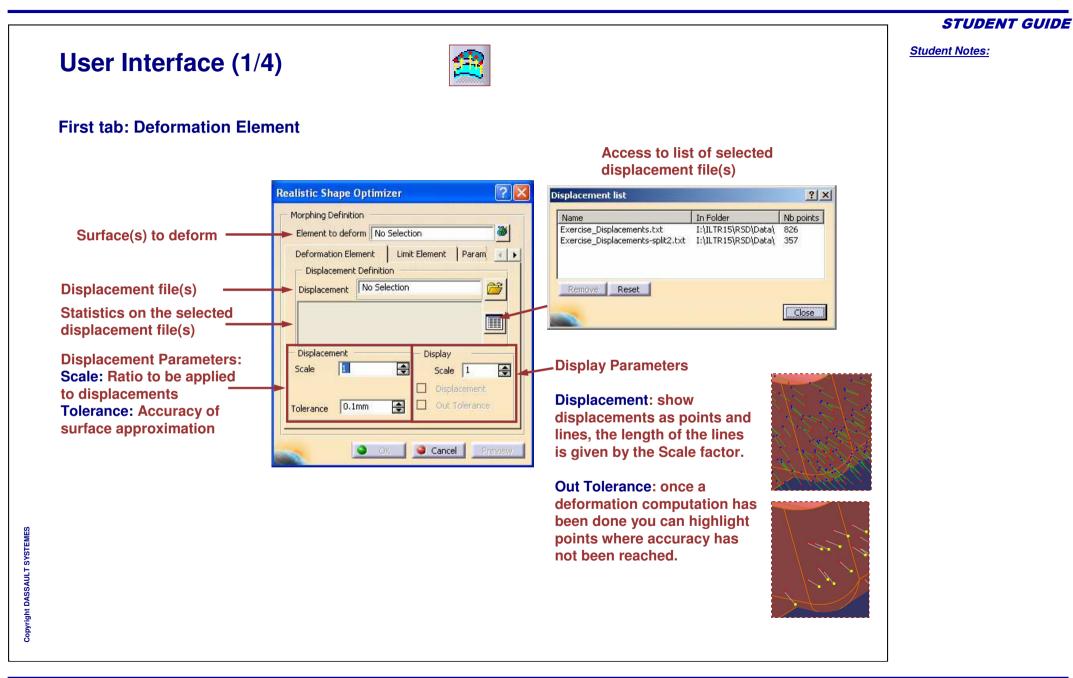
Surface Deformation

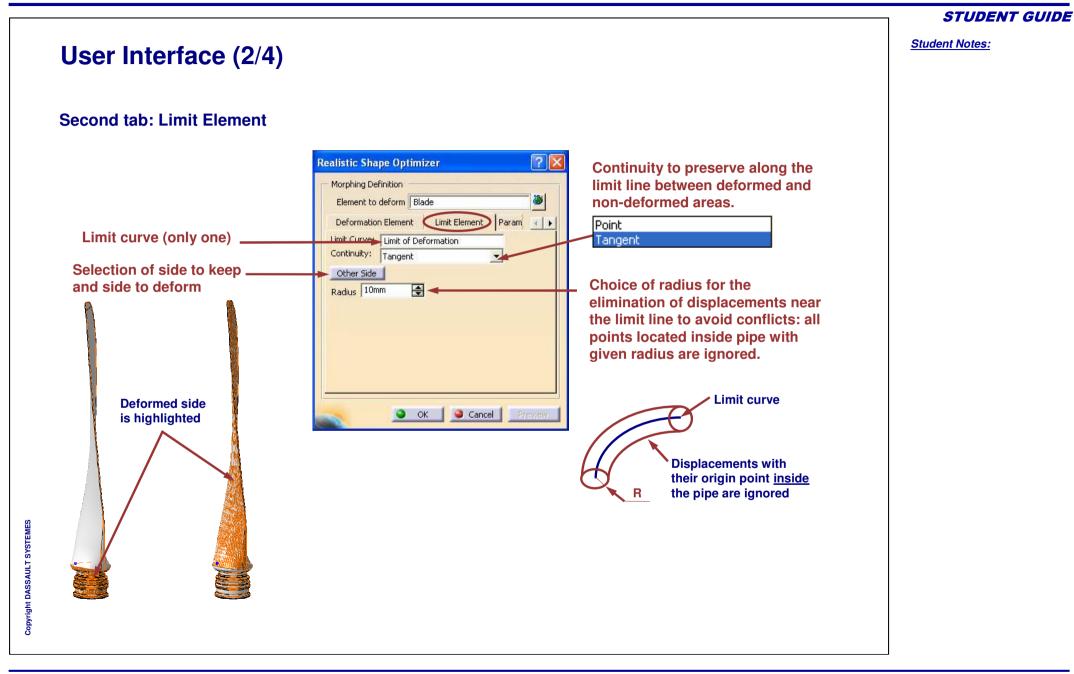
In this lesson you will learn about Deforming a Surface with a Displacement File and Update a Deformation Feature.

Copyright DASSAULT SYSTEMES

۲

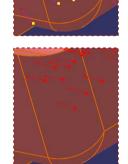

Displacement Files (1/2)


A Displacement File is a simple text file with 6 columns of real values.


- Real values represent Point Coordinates and corresponding Displacement along the main axes.
- The first line with text (title, column headers, ...) will be skipped

7.9621768 24.523676 -9.175852 -0.374125004 0.228395462 -0.271559715 7.9621768 25.476324 -9.175852 -0.366230488 0.238614777 -0.262971878 7.9621768 51.523674 -9.175852 -0.272540569 0.38237381 -0.179247856 7.9621768 51.523674 -9.175852 -0.272540569 0.38237381 -0.179247856 7.9621768 52.476326 -9.175852 -0.269556522 0.397731781 -0.172780991 12.8375463 24.508671 -8.316193 -0.328528404 0.201967239 -0.285179138 12.8375463 52.491329 -8.316193 -0.325010147 0.39352417 -0.172418594 13.2664218 51.507366 -8.241629 -0.231938362 0.37773694 -0.18460803 17.7129154 24.493666 -7.456533 -0.275337219 0.173631668 -0.299666882 17.7129154 52.506334 -7.456533 -0.197212219 0.376548767 -0.182587147 18.5586681 -51.491062 -7.307405 -0.186105728 0.361289978 -0.195227623	230488 0.235614777 -0.262971878	0.228395462	-0 374125004	1993년 - 1993년 1993년 1997년 1997		
7.9621768 51.523674 -9.175852 -0.272540569 0.38237381 -0.179247856 7.9621768 52.476326 -9.175852 -0.269556522 0.397731781 -0.172780991 2.8375463 24.508671 -8.316193 -0.328528404 0.201967239 -0.285179138 2.8375463 25.491329 -8.316193 -0.328528404 0.201967239 -0.2855988 2.8375463 52.491333 -8.316193 -0.235010147 0.39352417 -0.172418594 2.8375463 52.491333 -8.316193 -0.235010147 0.39352417 -0.172418594 3.2604218 51.507366 -8.241629 -0.231938362 0.377723694 -0.18460083 7.7129154 24.493666 -7.456533 -0.268447876 0.179769516 -0.306476116 7.7129154 25.506334 -7.456533 -0.197212219 0.376548767 -0.182587147 8.5586681 -51.4921062 -7.307405 -0.186105728 0.361289978 -0.195227623			0.014122004	-9.175852	24.523676	.9621768
7.9621768 52.476326 -9.175852 -0.269556522 0.397731781 -0.172780991 12.8375463 24.508671 -8.316193 -0.328528404 0.201967239 -0.285179138 12.8375463 25.491329 -8.316193 -0.324790955 0.208269119 -0.282855988 12.8375463 52.491333 -8.316193 -0.235910147 0.39352417 -0.172418594 12.8375463 52.491333 -8.316193 -0.235910147 0.39352417 -0.172418594 13.2604218 51.507366 -8.241629 -0.231938362 0.377723694 -0.18460083 17.7129154 24.493666 -7.456533 -0.275337219 0.173631668 -0.299666882 17.7129154 25.506334 -7.456533 -0.268447876 0.179769516 -0.306476116 17.7129154 52.506336 -7.456533 -0.197212219 0.376548767 -0.182587147 18.5586681 -51.491062 -7.307495 -0.186105728 0.361289978 -0.195227623	548560 8 38237381 -8 170247856	0.235614777	-0.366230488	-9.175852	25.476324	.9621768
2.8375463 24.508671 -8.316193 -0.328528404 0.201967239 -0.285179138 2.8375463 25.491329 -8.316193 -0.324790955 0.208269119 -0.282855988 2.8375463 52.491333 -8.316193 -0.235010147 0.39352417 -0.172418594 3.2604218 51.507366 -8.241629 -0.235010147 0.37723694 -0.18460083 7.7129154 24.493666 -7.456533 -0.275337219 0.173631668 -0.2996660882 7.7129154 25.506334 -7.456533 -0.208447876 0.179769516 -0.306476116 7.7129154 52.506336 -7.456533 -0.197212219 0.376548767 -0.182587147 8.5586681 -51.491062 -7.307405 -0.197212219 0.361289978 -0.195227623		0.38237381	-0.272540569	-9.175852	51.523674	.9621768
2.8375463 25.491329 -8.316193 -0.324790955 0.208269119 -0.282855988 2.8375463 52.491333 -8.316193 -0.235010147 0.39352417 -0.172418594 3.2604218 51.507366 -8.241629 -0.231938362 0.377723694 -0.18460083 7.7129154 24.493666 -7.456533 -0.275337219 0.173631668 -0.299666882 7.7129154 25.506334 -7.456533 -0.268447876 0.179769516 -0.386476116 7.7129154 52.506336 -7.456533 -0.197212219 0.376548767 -0.182587147 8.5586681 51.491062 -7.307405 -0.186105728 0.361289978 -0.195227623	556522 0.397731781 -0.172780991	0.397731781	-0.269556522	-9.175852	52.476326	.9621768
2.8375463 52.491333 -8.316193 -0.235010147 0.39352417 -0.172418594 3.2604218 51.507366 -8.241629 -0.231938362 0.377723694 -0.18460083 7.7129154 24.493666 -7.456533 -0.275337219 0.173631668 -0.299666882 7.7129154 25.506334 -7.456533 -0.268447876 0.179769516 -0.386476116 7.7129154 52.506336 -7.456533 -0.197212219 0.376548767 -0.182587147 8.55586681 -51.4921062 -7.307405 -0.186105728 0.361289978 -0.195227623	528404 0.201967239 -0.285179138	0.201967239	-0.328528404	-8.316193	24.508671	2.8375463
3.2604218 51.507366 -8.241629 -0.231938362 0.377723694 -0.18460083 7.7129154 24.493666 -7.456533 -0.275337219 0.173631668 -0.299666882 7.7129154 25.506334 -7.456533 -0.268447876 0.179769516 -0.306476116 7.7129154 52.506336 -7.456533 -0.197212219 0.376548767 -0.182587147 8.5586681 51.491062 -7.307405 -0.186105728 0.361289978 -0.195227623	790955 0.208269119 -0.282855988	0.208269119	-0.324790955	-8.316193	25.491329	2.8375463
7.7129154 24.493666 -7.456533 -0.275337219 0.173631668 -0.299666882 7.7129154 25.506334 -7.456533 -0.268447876 0.179769516 -0.306476116 7.7129154 52.506336 -7.456533 -0.197212219 0.376548767 -0.182587147 8.5586681	010147 0.39352417 -0.172418594	0.39352417	-0.235010147	-8.316193	52.491333	2.8375463
7.7129154 25.506334 -7.456533 -0.268447876 0.179769516 -0.306476116 7.7129154 52.506336 -7.456533 -0.197212219 0.376548767 -0.182587147 8.5586681 51.491062 -7.307405 -0.186105728 0.361289978 -0.195227623	938362 0.377723694 -0.18460083	0.377723694	-0.231938362	-8.241629	51.507366	3.2604218
7.7129154 52.506336 -7.456533 -0.197212219 0.376548767 -0.182587147 8.558668151.4910627.3074050.1861057280.3612899780.195227623	337219 0.173631668 -0.299666882	0.173631668	-0.275337219	-7.456533	24.493666	7.7129154
8.558668151.4910627.3074050.1861057280.3612899780.195227623	447876 0.179769516 -0.306476116	0.179769516	-0.268447876	-7.456533	25.506334	7.7129154
	212219 0.376548767 -0.182587147	0.376548767	-0.197212219	-7.456533	52.506336	7.7129154
Point Coordinates Displacements	105728 0.361289978 -0.195227623	0.361289978	-0.186105728	-7.307405	51.491062	8.5586681
Point Coordinates Displacements						
Point Coordinates Displacements	Dianlagomente	Vianlagement		~~	int Coordinat	Do
	Displacements	Jispiacements		85	init Coordinat	FU

Student Notes:

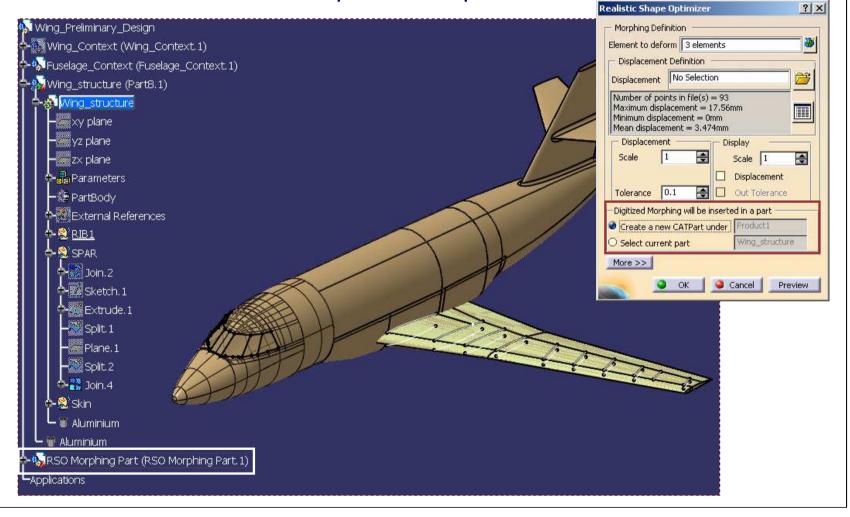

Student Notes:

User Interface (3/4)

Third tab: Parameters

Pts to ignore = Ratio (%) of points that can be ignored to improve the quality of the result = after a deformation computation, the displacements where the accuracy is the lowest are removed and a second computation is performed (= erroneous or unreliable points are filtered out); you can highlight ignored points for checking.

Threshold: Maximum value for displacement length, greater displacements are ignored; you can highlight points out of threshold for checking.



Morphing Definition Element to deform			35
Limit Element	Parameters		•
arameters : Pts to ignore	0	Display :	ints
Threshold	10000mm 🚔	Out Thresh	old

Student Notes:

User Interface (4/4)

When working in product mode you can also choose if the deformed surface should be created in the current part or in a new part.

Copyright DASSAULT SYSTEMES

Student Notes:

Update Digitized Morphing

- The Update command can be used to update the Digitized Morphing features after a change in the displacement file(s)
 - In the case of features created from a Deviation Analysis or from translational displacement vectors stored in a CATAnalysis the update can be done with the standard update mechanism of CATIA (automatic or manual update with ②).
- When you select the command, all Digitized Morphing features in the current part are analyzed to check if the displacement file(s) have changed since the feature creation.
- A displacement file is said to have changed if its creation date is changed (the feature includes a time stamp)
- If no displacement file has been modified you get a message

No Updal	e Action
	There is no Digitized Morphing feature to update.
	ОК

Otherwise the list of features with modified displacement files is shown and you can select the features to update:

Student Notes:

To Sum Up

In this course you have seen:

- How to deform a surface or a set of surfaces using a displacement file, a deviation analysis or an analysis result
- How to update Digitized Morphing features