Introduction to the Mathematical Concepts of CATIA V5

Version 5 Release 19
January 2009
EDU_CAT_EN_MTH_FF_V5R19

About this course

Objectives of the course

Upon completion of this course you will be able to:

- Understand the mathematical concepts for curve and surface definition in CATIA V5.

Targeted audience

GSD and/or FreeStyle users

Prerequisites

Students attending this course must have knowledge of GSD and FreeStyle Fundamentals

Table of Contents

The Feature Approach 4
The Mathematical Level 6
The Geometry Level for Curves 7
The Geometry Level for Surfaces 13
Object Analysis 18

The Feature Approach (1/2)

- CATIA V5 supports a FEATURE APPROACH.
- It means that users create and handle objects which are more than mathematical objects because they carry more than just mathematical definitions.
- The mathematical definition of the object is no more than one of the representations of the feature which CATIA may refer to when needed.
. For example, another representation of a surface in CATIA V5 is its triangular mesh used for shaded display or draft analysis.

The Feature Approach (2/2)

FEATURE

ASSOCIATIVITY INFORMATION

-parents
-creation operator
-children
\ldots

```
-display attributes:
color,
layer,
visibility,
    ...
    -applicative attributes:
    material,
    physical properties,
    tolerances
```


Note: a Datum is a feature with no parents nor creation operator in the asociativity information (it may only have children)

The Mathematical Level

- The mathematical part of the object definition includes both geometry and topology.
- The geometry defines the shape itself and its location in space,
* The geometry is defined by mathematical objects such as points, vectors, angles, polynomials, ...
- The topology ensures the consistent assembly of the geometrical elements (connections, orientations)
- It is defined by mathematical objects such as vertices, edges, faces

The Geometry Level for Curves (1/6)

- Curves are described by canonic or parametric forms
- Examples of canonic forms

Line defined by:
-An underlying surface (may be a plane)
-An origin point
-A direction on underlying surface
-A start position
-An end position
Circle defined by:
-underlying surface
-center
-radius
-start angle
-end angle

```
Canonic forms
- are compact (little data)
- are exact
- make it easy to benefit from the
characteristics of the object (example:
select a line to define a direction)
```


The Geometry Level for Curves (2/6)

- Other types of curves: parametric curves = NURBS

- Non-Uniform

A NURBS curve may be described by several arcs, or spans, or segments. Each segment is described by a parametric form: it has its own set of parametric representations, for example segment number i :
$X=F_{x_{i}}\left(u_{i}\right)$
$Y=F_{Y_{i}}\left(u_{i}\right) \quad$ Note: the segments cannot be separated
$Z=F_{Z i}\left(u_{i}\right)$ by the Disassemble command.

+ possibility to describe more complex shapes with single objects
- segmentation tends to explode if not controlled

The Geometry Level for Curves (3/6)

NURBS = Non-Uniform Rational B- $\underline{\text { Spline }}$

With $\mathrm{P}_{\mathrm{xi}}\left(\mathrm{u}_{\mathrm{i}}\right)$ and $\mathrm{Q}_{\mathrm{xi}}\left(\mathrm{u}_{\mathrm{i}}\right)$ being polymomials, ie. mathematical forms such as:
$P_{x i}(u)=A_{0}+A_{1} \cdot u+A_{2} \cdot u^{2}+\ldots+A_{n} \cdot u^{n}$
NURBS created in CATIA V5 are usually polynomial, $Q(u)=1$ this is why they are called NUPBS (P for Polynomial)

+ possibility to describe exact conics, for example a circle can be given by:

$$
X=R \frac{1-u^{2}}{1+u^{2}} \quad Y=R \frac{2 u}{1+u^{2}} \quad \cdots \text { but canonic forms are also exact }
$$

- degrees tend to explode if not controlled example: ruled surface on two curves given by $\frac{P_{1}(u)}{Q_{1}(u)}$ and $\frac{P_{2}(u)}{Q_{2}(u)}$

$S(u, v)=(1-v) \frac{P_{1}(u)}{Q_{1}(u)}+v \frac{P_{2}(u)}{Q_{2}(u)}=\frac{(1-v) P_{1}(u) Q_{2}(u)+v P_{2}(u) Q_{1}(u)}{Q_{1}(u) Q_{2}(u)}$ degrees of polynomials add

The Geometry Level for Curves (4/6)

NURBS = Non-Uniform Rational B-ㅇ́spline

- B-Splines

The definition of a B-Spline curves includes the description of the transitions between its segments.

Note: in CATIA V5, NURBS are always internally curvature continuous,
= transitions between segments are always C2.

+ possibility to safely manipulate complex objects, for example to deform complex curves while preserving their overall smoothness (no unexpected gap or sharp corner appearing)
- It may be difficult manipulate the curve while keeping it good looking (example: deform by control points while keeping a nice curvature distribution)

The Geometry Level for Curves (5/6)

Note 1: the polygonal representation

- A NURBS can be represented by a polygon = a set of control points
- This representation is often used in style design for intuitive shaping

Note 2: a special case of NURBS

- A NURBS can be uniform (only one segment)
- It can also be polynomial $\left(Q_{x i}\left(u_{i}\right)=1\right)$

This type of curves is known as Bezier curve It is favored by style designers because it is easier to manipulate (fewer points, well known properties)

The Geometry Level for Curves (6/6)

General validity criteria for curves:

- A mono-cell curve must be C2 continuous, i.e. mathematically curvature continuous.
- It means that if an action produces a curve that is not C2 continuous, it is cut at each discontinuity and the C2 pieces become cells which are called edges and are assembled in a topology.
- The topology consists in a list of edges with shared vertices (common to several edges) and free vertices (common to one edge only = end points).
- Example: the boundary feature is a single CATIA curve which is not C 2 continuous.
- This CATIA curve is made of several C2 continuous curves called edges that are assembled by a topology (joined).
- The edges may be isolated from each other by an Extract or a Disassemble command (option All Cells).

The Geometry Level for Surfaces (1/5)

- Surfaces can also described by canonic or parametric forms
- Some surfaces can also be described by their creation process
- Since R14 CATIA V5 also handles subdivision surfaces
- Examples of canonical surfaces:
- Plane
* Cone
- Sphere
- Cylinder
- Torus

The Geometry Level for Surfaces (2/5)

- Procedural surfaces
- A procedural surface is described by a creation process and the corresponding input

Examples of procedural surfaces:

- Offset surface
defined by a surface + a distance

- Tabulated cylinder defined by a curve, a direction, two lengths
- Linear transformation surface defined by a surface and a geometric transformation

The Geometry Level for Surfaces (3/5)

- Parametric surfaces $=$ NURBS

The definition for surfaces is similar to the definition for curves with 2 parameters: surfaces may be described by several segments (Non Uniform), each segment is described by a rational form (Rational), but surfaces can be handled globally thanks to B-Spline techniques.
$X=F_{X i}\left(u_{i}, v_{i}\right)=\frac{P_{x i}\left(u_{i}, v_{i}\right)}{Q_{x i}\left(u_{i}, v_{i}\right)}$
$Y=F_{Y_{i}}\left(u_{i}, v_{i}\right)$
$Z=F_{z i}\left(u_{i}, V_{i}\right)$

Notes:

- NURBS created in CATIA V5 are usually (almost always) polynomials (NUPS)
- they are always curvature continuous (C2),
- NURBS surfaces can be represented and handled by control points,
- uniform polynomial NURBS are known as Bezier patches

The Geometry Level for Surfaces (4/5)

- Subdivision surfaces

Subdivision is an algorithmic technique to generate smooth surfaces as a sequence of successively refined polyhedral meshes.

Advantages:

A complex object can be represented with only one multi-faced surface
The surface is refined only where required (details) => Easy manipulation + Data size reduced

Student Notes:

The Geometry Level for Surfaces (5/5)

General validity criteria for surfaces:

- A mono-cell surface must be C2 continuous.
- It means that if an action produces a result that is not C2 continuous, it is cut at each discontinuity and the C2 pieces become cells which are called faces and are assembled in a topology.
- Example: the sweep feature is a single surface which is not C2 continuous (not even C1 in this case). It is made of several C2 continuous faces that are assembled by a topology (joined). The geometric surfaces may be isolated from each other by a Disassemble command (option All Cells).

