

# About this course

## **Objectives of the course**

Upon completion of this course you will be able to:

- Define and customize material properties
- Apply pressure, acceleration and force density loads; and define virtual parts
- Apply pivot, ball-joint, and user-defined restraints
- Compute a frequency analysis for a single part
- Create planar sections with which to visualize internal result values
- Compute and refine a mesh using adaptive meshing in order to achieve a pre-defined accuracy

## **Targeted audience**

**Mechanical Designers** 

## **Prerequisites**

Students attending this course should have knowledge of CATIA V5 Fundamentals, Generative Part Structural Analysis Fundamentals

Instructor Notes:

Copyright DASSAULT SYSTEMES



| <ul> <li>Advanced Pre-Processing Tools</li> <li>Advanced Pre-Processing Recap Exercise</li> <li>Frequency Analysis</li> <li>To Sum Up</li> <li>Computation</li> </ul> | 6<br>42<br>43<br>53 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| <ul> <li>Advanced Pre-Processing Recap Exercise</li> <li>Frequency Analysis</li> <li>To Sum Up</li> <li>Computation</li> </ul>                                        | 42<br>43<br>53      |
| <ul> <li>Frequency Analysis</li> <li>To Sum Up</li> <li>Computation</li> </ul>                                                                                        | 43<br>53            |
| <ul> <li>To Sum Up</li> <li>Computation</li> </ul>                                                                                                                    | 53                  |
| Computation                                                                                                                                                           |                     |
|                                                                                                                                                                       | 54                  |
| Computing a Frequency Solution                                                                                                                                        | 55                  |
| Computing with Adaptivity                                                                                                                                             | 62                  |
| <ul> <li>Historic of Computation</li> </ul>                                                                                                                           | 65                  |
| To Sum Up                                                                                                                                                             | 68                  |
| GPS Advanced Post-Processing Tools                                                                                                                                    | 69                  |
| Results Visualization                                                                                                                                                 | 70                  |
| Results Management                                                                                                                                                    | 86                  |
| Refinement                                                                                                                                                            | 91                  |
| To Sum Up                                                                                                                                                             | 104                 |
| Master Exercise: Frequency Analysis                                                                                                                                   | 105                 |
| Crank Shaft Frequency Analysis: Presentation                                                                                                                          | 106                 |
| Frequency Analysis on a Crank Shaft (1): Pre-Processing                                                                                                               | 107                 |



# **GPS Extended Pre-Processing**

In this lesson you will see the pre-processing tools used for advanced analysis

- Advanced Pre-Processing Tools
- Advanced Pre-Processing Recap Exercise
- Frequency Analysis
- 📼 To Sum Up

# **Advanced Pre-Processing Tools**

You will see following Advanced Pre-Preocessing Tools

- Defining Loads
- Defining Restraints
- With Which Mesh to Work
- Defining Virtual Parts
- Defining User Material







Accelerations are intensive loads representing mass body force (acceleration) fields of uniform magnitude applied to parts.

| Supports Negel   | action     | 図.   |
|------------------|------------|------|
| Supports Moser   | BACIONS    |      |
| -Axis System -   |            | 100  |
| Type Global      |            | 1    |
| Display locally  |            |      |
|                  |            |      |
| -Acceleration Ve | ctor       |      |
|                  | ctor       |      |
| Norm 9.6m_sz     |            |      |
| X Om_s2          |            |      |
| Y Om_s2          |            |      |
| z -9.8m_s2       |            |      |
| 1914             |            | _    |
|                  | Э ОК 🛛 🥥 С | ance |
|                  |            | -    |

Acceleration: Units are mass body force (or acceleration) units (typically N/kg, or m/s2 in SI).

Supports: Accelerations can be applied to Volumes or Parts

#### Axis System:

**Global:** if you select the Global axis-system, the components of the sliding direction will be interpreted as relative to the fixed global rectangular coordinate system.

**User-defined:** if you select a User-defined axis-system, the components of the sliding direction will be interpreted as relative to the specified rectangular coordinate system.

Note: To select a User-defined axis-system, you must activate an existing axis by clicking it in the feature tree. Its name will then be automatically displayed in the Current Axis field.

#### **Acceleration Vector:**

You need to specify three components for the direction of the field, along with a magnitude information.

Instructor Notes:

Copyright DASSAULT SYSTEMES



About Rotation force 🚯

Rotation Forces are intensive loads representing mass body force (acceleration) fields induced by rotational motion applied to parts.

| Name Rotation For    | ce.1       |  |
|----------------------|------------|--|
| Supports No select   | ion        |  |
| Rotation Axis No se  | lection    |  |
| Angular Velocity 30  | 000turn_mn |  |
| Angular Acceleration | n, Orad_s2 |  |

**Rotation Force:** Units are angular velocity and angular acceleration units (typically rad/sec and rad/sec2 in SI).

Supports: Accelerations can be applied on Volumes or Parts

**Rotation Axis:** The user specifies a rotation axis and values for the angular velocity and angular acceleration magnitudes, and the program automatically evaluates the linearly varying acceleration field distribution.



Copyright DASSAULT SYSTEMES







Pressures are intensive loads representing uniform scalar pressure fields applied to surface geometries; consequently the force direction is everywhere normal to the surface.

You can define as many Pressure Loads as desired with the same dialog box.

| Pressure<br>Name Pressure.1<br>Supports No selection                                                   |                                         | Supports: Pressure can be applied on Surfaces or Faces<br>Pressure: Units are pressure units : N/m2 (in SI) but can be<br>MPa (1MPa=1 N/mm <sup>2</sup> or 1Pa=1N/m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pressure 10N_m2 Data Mapping No selection Display Bounding Box                                         | Browse                                  | You can import external data files. They can be either a .txt file<br>(columns separated using the Tab key) or an .xls file with a<br>pre-defined format (four columns, the first three columns<br>specifying the X, Y and Z points coordinates in the global axis<br>and the last one containing the coefficient).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pressure objects can by<br>y a double-click on the<br>orresponding object on<br>the specification tree | Cancel<br>De edited<br>ne<br>pr icon in | Imported Table       ? ×         Static Case       20       0       0.02       50         Pressure.1       20       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       1       0       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       1       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <th< th=""></th<></th1<> |







٦

| rce Vector allows you to define the<br>nsity by giving as input only a force | equivalent of the existing line/Surface/body force        |  |  |  |  |
|------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|
| nony by giving ao inpat only a loro                                          |                                                           |  |  |  |  |
| u can select several geometries of                                           | the same type and apply a vector force on them            |  |  |  |  |
| J                                                                            |                                                           |  |  |  |  |
| Force density defined by force vector 📃 🔲 🗙                                  |                                                           |  |  |  |  |
| Name Force Density.2                                                         | The supports can be: Edges, Surfaces, 3D bodies           |  |  |  |  |
| Supports No selection                                                        | Catia computes automatically the volume/surface/length on |  |  |  |  |
| Axis System                                                                  | density.                                                  |  |  |  |  |
| Type Global                                                                  |                                                           |  |  |  |  |
| Display locally                                                              | · · · · · · · · · · · · · · · · · · ·                     |  |  |  |  |
|                                                                              | Static Case                                               |  |  |  |  |
| Force Vector                                                                 | 🖶 🦻 Restraints.1                                          |  |  |  |  |
| Norm ON                                                                      |                                                           |  |  |  |  |
| X ON                                                                         |                                                           |  |  |  |  |
| Y ON                                                                         | Force Density 1                                           |  |  |  |  |
| z ON                                                                         | Static Case Solution.1                                    |  |  |  |  |
|                                                                              |                                                           |  |  |  |  |
|                                                                              |                                                           |  |  |  |  |










































# **Defining User Material**

You will see how to define new material using pre-define material properties







### **INSTRUCTOR GUIDE** How to Customize Pre-Define Material Properties (2/2) You can define new material properties by modifying pre-define ones 5 Click on the Analysis tab 6 Modify the properties you want Properties Current selection : Alumini Current selection : Alumin Rendering | Inheritance | Feature Properties | Analysis | Dra Rendering Inheritance Feature Properties Analysis Dra Material Isotropic Material -Material Isotropic Material \* Struct Isotropic Material Orthotropic Material 2D Fiber Material Poissor HoneyComb Material Density Anisotropic Material Density Anisotropic Material Stru -Structural Properties Young Modulus 7e+010N\_m2 Poisson Ratio 0.346 Density 2710kg\_m3 Thermal Expansion 2.36e-005\_Kdeg Thermal Expansion 2.36e-005\_Kdeg Yield Strength 9.5e+007N\_m2 Yield Strength 9.5e+007N\_m2 Finite Element Model.1 7 Click on OK to validate Nodes and Elements Properties.1 Materials.1 Copyright DASSAULT SYSTEMES Material.1 User Material.1 Static Case





# Why Frequency Analysis (1/2)

Mechanical structures are also subjected to vibration and time varying loads in addition to static loads.

A structure is subjected to vibrations depending on the source of vibration. There are two ways to excite the structure.

- Vibrations may be generated within structure itself as in case of rotating turbines, propellers, reciprocating engines.
- Structures get excited from other vibration source as in case engine supporting structure vibrates because of combustion engine vibration, airplane wings vibrate due to rotor, turbine casing vibrations



Instructor Notes:

Copyright DASSAULT SYSTEMES





| As you have seen in introduction specificities. Whatever the type of                                                                     | there are 2 kinds of frequency an frequency analysis, you can not                                             | alysis. You will see their<br>apply loads.                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| You have the possibility to start fi<br>and masses. If you choose "Refer<br>you just need to select them in the<br>the following slides. | om scratch (New) or to use refere<br>ence" it means you have previous<br>e specification tree. You will see I | ences for defining the restraints<br>sly defined in other cases and<br>how to apply additional Mass in |
| Frequency analysis                                                                                                                       | Frequency Case                                                                                                | Restraint X                                                                                            |
| A Frequency Case                                                                                                                         | Restraints:     New O Reference                                                                               |                                                                                                        |
| Restraints.1                                                                                                                             | 🖼 Masses: 🛛 🕑 New 🔿 Referen                                                                                   |                                                                                                        |
| - 🗿 Masses.2                                                                                                                             | Static Case Solution:                                                                                         | Mass 🗵                                                                                                 |
| - 🔯 Frequency Case Solution.2                                                                                                            | Filde existing analysis cases                                                                                 |                                                                                                        |
| - 🔄 Sensors.2                                                                                                                            |                                                                                                               |                                                                                                        |
| ree Frequency analysis                                                                                                                   |                                                                                                               |                                                                                                        |
| A Free Frequency Case                                                                                                                    | As you can see in the tree "Fre                                                                               | e Frequency Analysis" does not                                                                         |
| Masses.1                                                                                                                                 | allow the creation of restraint.                                                                              | ou can only add some masses.                                                                           |
| - 🔯 Frequency Case Solution.1                                                                                                            | Free frequency analysis are use                                                                               | ed to compute vibration cases.                                                                         |
| Sensors 1                                                                                                                                | (cē)                                                                                                          |                                                                                                        |
|                                                                                                                                          | If the "Restraints" opti<br>Case", it becomes a "I<br>equivalent to vibration                                 | ion unchecked in the "Frequency<br>Free Frequency" Analysis which is<br>modes                          |





| What are Mass Density and Distributed Ma                                                                                                                                                                                                                                | ass and Inertia                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mass densities are used to model purely inertial (non-structura such as additional equipment.                                                                                                                                                                           | II) system characteristics,                                                                                                                                                                                                                            |
| Mass Densities represent scalar mass density fields of given in<br>geometries. They can be distributed on curves/edges, faces/su<br>quantity remains constant independently of the geometry select<br>included in static cases: in this case, they are used for loading | ntensity, applied to<br>Irfaces and groups. This<br>ction. Mass sets can be<br>s based inertia effects                                                                                                                                                 |
| Distributed Mass and Inertia represents application mass and inertia values to virtual parts. Different inertia values for a same mass distribution will give different frequency values.                                                                               | P2       Distributed Mass and Inertia _ X         Name Distributed Mass and Inertia.1         Supports No selection         Axis System         Type Global         Display locally         Mass Okg         Inertia Tensor         111         Okgxm2 |
| Surface Mass Density                                                                                                                                                                                                                                                    | 122       Okgxm2         133       Okgxm2         112       Okgxm2         113       Okgxm2         123       Okgxm2         123       Okgxm2         Cancel                                                                                           |





Instructor Notes:





# Computation

In this lesson you will learn how to compute a frequency analysis and use some advanced computation tools

- Computing a Frequency Solution
- Computing with Adaptivity
- Historic of Computation
- 📼 To Sum Up





Introduction



At this step of your work you must make sure that your materials, restraints and loads are successfully defined. The computation will generate the analysis case solution, along with partial results for all objects involved in the definition of the Analysis Case.

The primary Frequency Solution Computation result consists in a set of frequencies and associated modal vibration shape vectors whose components represent the values of the system DOF for various vibration modes.

The program can compute simultaneously several Solution object sets, with optimal parallel computation whenever applicable.

| All                          | •                                 |
|------------------------------|-----------------------------------|
| All                          |                                   |
| Analysis Cas<br>Selection by | e Solution Selectior<br>Restraint |
| Preview                      |                                   |
|                              |                                   |

The combo box allows you to choose between several options for the set of objects to update:

- All : All the objects defined in the analysis features tree will be computed
- Mesh only: the preprocessing parts and connections will be meshed. The preprocessing data (loads, restraints and so forth) will be applied onto the mesh. In case the "Mesh only" option was previously activated, you will then be able to visualize the applied data on the mesh by using the Visualization on Mesh option (contextual menu)

Analysis Case Solution Selection: only a selection of user-specified Analysis Case Solutions will be computed, with an optimal parallel computation strategy

Selection by Restraint: only the selected characteristics will be computed (Properties, Restraints, Loads, Masses).

Instructor Notes:

DASSAULT SYSTEMES



| Α        | dditional Information                                                                                                                                                                                       |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ۲        | If several frequency analysis cases have been defined, you can compute them simultaneously, following the same procedure.                                                                                   |  |  |
| <u>í</u> | You can also compute only a selection of cases by selecting Analysis Cases Solution Selection. You can then specify the cases in the Compute dialog box.                                                    |  |  |
| ۲        | You can compute vibration modes either for the free system or for the system subjected to supports. In the first case there are no restraints so your Analysis Case must contain no restraints objects set. |  |  |
|          | To display CPU time and memory requirement estimates prior to launching any computation, check Preview in Compute dialogue box.                                                                             |  |  |



| Selecting Frequency Solution Para                                                                                                                                                                                                                                                                                                                                                                                                            | ameters                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The definition parameters of an analysis case, (avai<br>analysis product, in the New Case dialog box at the<br>modified once the Case has been created. They mu<br>computation parameters of a case solution, which a<br>and are editable afterwards.                                                                                                                                                                                        | ilable, in the ELFINI structural<br>e time of a Case Insertion) cannot be<br>ist not be confused with the<br>are proposed by default at creation,                                           |
| <ul> <li>The Frequency Solution Parameters dialog box con</li> <li>Number of modes</li> <li>Method (Iterative subspace or Lanczos)<br/>Iterative subspace is used for complex problem<br/>while Lanczos method is faster and used for sn<br/>only with EST Product.)</li> <li>Dynamic parameters (Maximum iteration number<br/>Double-click on the Solution objects set in the<br/>analysis feature tree to display the Frequency</li> </ul> | ntains the following parameters:<br>ns, more accurate however takes more time<br>naller problems. (These methods are available<br>er and Accuracy)<br>2 Modify the parameters you want      |
| Solution parameters dialog box.                                                                                                                                                                                                                                                                                                                                                                                                              | Frequency Solution Paramet INumber of Modes<br>ID<br>Dynamic Parameters<br>Maximum iteration number 50<br>Accuracy<br>O.001<br>Mass Parameter<br>Exclude<br>OK Cancel<br>3<br>Click on 'OK' |

| Vhile CATIA computes your analysis, the interact<br>nay launch a batch which performs the computat                                                                                                                    | tive mode is not available. So, you<br>tion.                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Go to Tools > Utility                                                                                                                                                                                                 | 2 Double-click 'AnalysisUpdateBatch'                                                                                                                                                                                                                                                                                                                               |
| Iools       Analyze       Window       Help         Image       Image       Image         Macro       Utility         Enter analysis file to compute and folder for savin computation files and select Batch run mode | Batch Monitor       Ele     Edit     Help       Utilities     Start     Processes       Type     Description       HanalysisUpdateBatch     Analysis Batch       Batch-DXF-IGE5-STEP     Batch for Data Ext       ExtractModeFromSequential     Extract CATIA Vert       MigrateV4ToV5     Migrate V4 files int       CATAsmulpgradeBatch     Batch Utility for Ad |
| AnalysisUpdateBatch ? X<br>File to Compute<br>Folder to Save Computed Data<br>Access all documents from source                                                                                                        | AnalysisUpdateBatch     ? ×       File to Compute     D:/BatchRun\FuseIage.CATAnalysis     Browse       Folder to Save Computed Data     D:/BatchRun     Browse       D:/BatchRun     Browse     Gr. Run Local       C Run Local     Licensing Setup                                                                                                               |



| About | Ad | apti | ivity |
|-------|----|------|-------|
|-------|----|------|-------|



'Adaptivity' consists in selectively refining the mesh in such a way as to obtain a desired result accuracy in a specified region (see post-Pros. Lesson)

| Iterations Number | . 1       |  |
|-------------------|-----------|--|
| Allow unrefine    | ment      |  |
| 🗌 Desactivate gl  | obal sags |  |
| 🐨 Minimum Size    | 2mm       |  |

- The mesh refining criteria are based on a technique called predictive error estimation, which consists in determining the distribution of a local error estimate field for a given Static Analysis Case. "Adaptivity Management" consists in setting global adaptivity specifications and computing adaptive solutions.
- The Adaptivity functionalities are only available with static analysis solution or a combined solution that references a static analysis solution.
- After you have run the "Adaptive" computation, you can return to the static solution and check that the mesh has been refined according to your specifications in the Adaptivity Entities.
- You can create several Adaptivity Entities associated to different Static Solutions and corresponding to different regions of your part, i.e: create several Adaptivity entities associated to the same Static Solution and corresponding to
  - the different regions of your part create several Adaptivity Entities associated to different Static Solutions and corresponding to the same region of your part
- The computation is such as all adaptivity entities specifications are simultaneously respected within the global Maximum Number of Iterations specification.

Instructor Notes:

Copyright DASSAULT SYSTEMES

| Computing with Adaptivity Once you have defined an "adaptivity" you have to compute the analysis taking the adaptivity into account. |                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1 Enter the number of iterations                                                                                                     | 2 Check the different options if needed:                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Adaptivity Process Parameters                                                                                                        | <ul> <li>"Allow Unrefinement": Allows the global mesh size to be increased in certain areas</li> <li>"Deactivate global sags": Allows you to de-activate the global sags defined in the mesh properties</li> <li>"Minimum Size": allows you to impose a minimum size of element</li> <li>"Sensor stop criteria": stops the computation when the sensor has converged</li> <li>Click on Ok</li> </ul> |  |  |
| At the end of the computation,<br>a Warnings message appears<br>to inform you if the objective<br>error is not reached:              |                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |



Instructor Notes:







# <section-header><section-header><text><text><list-item><list-item><list-item>






| The "Generate Image" tool is avai<br>To access this tool, right-click on<br>mages at the same time : The mu                                                                                                 | lable in the cont<br>the solution cas<br>Iti-selection is a | extual menu of each Solutio<br>se in the specification tree. Y<br>llowed (press Ctrl key)                                                                                                                                                                             | on Case<br>/ou can create man                                      | у            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------|
| - A Static Case                                                                                                                                                                                             |                                                             | Image Generation                                                                                                                                                                                                                                                      | ? ×                                                                |              |
| <b>T</b> Restraints.1                                                                                                                                                                                       |                                                             | - Available Images                                                                                                                                                                                                                                                    | 1                                                                  |              |
|                                                                                                                                                                                                             |                                                             | Image Name                                                                                                                                                                                                                                                            | Physical Type                                                      |              |
| Static Case Solution.1      Se      Delete      Del      Static Case Solution.1      Se      Delete      Del      Static Case Solution.1 object      Report      Generate Image      Clear Solution Storage | Filter by<br>Image Name                                     | Stress principal tensor symbol<br>Stress full tensor component (nodal val<br>Stress full tensor component (element'<br>Stress full tensor text<br>Strain principal tensor component (nod<br>Strain full tensor component (nodal val<br>Strain principal tensor symbol | Stress<br>Stress<br>Stress<br>Stress<br>Strain<br>Strain<br>Strain | by<br>cal Ty |
| For non-static cases, you have to select the current occurrenc                                                                                                                                              | the possibility                                             | Image name: str*<br>Physical type: All                                                                                                                                                                                                                                |                                                                    |              |
| If the "Deactivate existing Imag<br>checked, it will have the same<br>the "image generation" using t<br>toolbar                                                                                             | es" button is<br>behavior as<br>he Image                    | Deactivate existing images                                                                                                                                                                                                                                            | Cancel                                                             |              |



### Principal Stresses Image Edition 🔤

The "Image Edition" dialog box is composed of 2 tabs:

- Visu: provides a list with visu types (Average-Iso, Discontinuous-Iso, Text) and a list with criteria (Principal-Value).
- Selections: In the case of CATProducts, pre-defined groups of elements belonging to given mesh parts can be multi-selected.

More: provides different filters. You can choose to generate images on nodes, elements, nodes of elements, center of elements or Gauss points of elements. You can also choose Value Type options.

| Deform according to Displacements | Position: Node                         | Clar    | p.1                                                                                                             |          |
|-----------------------------------|----------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|----------|
| Aueroes                           | Value type: Real                       | Distr   | buted Force.1                                                                                                   |          |
| Discontinuous iso                 | Complex part:                          | OCT     | REE Tetrahedron Mesh.1 : Part1<br>ace Slider 1                                                                  |          |
| Fringe                            | Do not combine                         |         |                                                                                                                 |          |
| Text                              | Filters                                |         |                                                                                                                 | 1.1      |
| Criteria                          | Show filters for: Nodes of 3D Elements |         | <u> </u>                                                                                                        |          |
| Principal value                   |                                        | Act     | ivated Groups                                                                                                   |          |
|                                   | Axis system: Local (Cartesian)         | Alt     | ie model                                                                                                        |          |
|                                   | Display locally                        |         |                                                                                                                 |          |
|                                   | Component: All                         |         |                                                                                                                 |          |
| Options                           | Layer: All                             |         |                                                                                                                 |          |
|                                   | Lamina: C22                            |         | Let a let |          |
| -                                 | C33                                    |         |                                                                                                                 | lore>> i |
|                                   | C11 & C22                              | Preview | OK Sancel                                                                                                       | Preview  |
|                                   |                                        |         |                                                                                                                 |          |

Instructor Notes:

Copyright DASSAULT SYSTEMES





|                                                                                                       | og box for Precision is composed                                                                                                                                             | l of 3 tabs:                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Visu: provides a list v<br>error is for Fringe vis                                                    | vith visu types (Fringe, Symbol a<br>u type and Scalar for Symbol and                                                                                                        | nd Text) and a list with criteria (Local<br>d Text visu types ).                                                                                                                   |
| Selections: In the cas<br>mesh parts can be m                                                         | e of CATProducts, pre-defined gulti-selected.                                                                                                                                | roups of elements belonging to given                                                                                                                                               |
| More: provides different<br>nodes of elements, co<br>Value Type options.                              | ent filters. You can choose to ge<br>enter of elements or Gauss point                                                                                                        | erate images on nodes, elements,<br>s of elements. You can also choose                                                                                                             |
| Image Edition                                                                                         |                                                                                                                                                                              | ? X Image Edition ? X                                                                                                                                                              |
| Visu Selections<br>Deform according to Displacements<br>Types<br>Fringe<br>Symbol<br>Text<br>Criteria | Values Values Value type: Real Complex part: Do not combine Filters Show filters for: 3D Elements Axis system: Global (Cartesian) Display locally Component: All Layer: None | Visu     Selections       Available Groups     Clamp.1       Distributed Force.1     OCTREE Tetrahedron Mesh.1 : Part1       Visu     Y       Activated Groups       All the model |
| Options                                                                                               | Laminar 1 🖾 O Ply idr                                                                                                                                                        | More>>>                                                                                                                                                                            |









| At                | oout Cut Plane Analysi                                                                                                                                                                                                                                                                          | is (2/2) 🔯                                                                                    |                                            |                                          |                                  |                           |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------------|---------------------------|
| Wh<br>sec<br>orie | en you click on the Cut plane Ana<br>tion plane will take the last locati<br>entation.                                                                                                                                                                                                          | alysis tool,<br>on and                                                                        | Cut Plane Ar                               | nalysis                                  | <u>?×</u>                        |                           |
| Init              | Plane parameters: restores the d                                                                                                                                                                                                                                                                | efault position                                                                               | View sect                                  | ion only                                 |                                  |                           |
| and               | orientation of the cutting plane.                                                                                                                                                                                                                                                               | The default                                                                                   | 🛛 🗐 Show cut                               | ting plane                               |                                  |                           |
| pos               | ition and orientation will be one of                                                                                                                                                                                                                                                            | of the                                                                                        |                                            | Reverse Dire                             | ction                            |                           |
| foll              | owing.                                                                                                                                                                                                                                                                                          |                                                                                               | D Project v                                | ectors on plans                          |                                  |                           |
| *                 | Before using this tool if you have<br>the compass on the geometry, th<br>position and orientation of the co-<br>taken by the cutting plane.<br>If the compass is not positioned<br>geometry, the cutting plane will p<br>the center of gravity of the geome<br>orientation depending on 3D view | e positioned<br>nen these<br>ompass will be<br>on the<br>pass through<br>netry with the<br>w. |                                            | nit plane param                          | ose                              |                           |
|                   | Make UV the Privileged Plane<br>Make VW the Privileged Plane<br>Make WU the Privileged Plane<br>Make Privileged Plane Most Visible<br>Snap Automatically to Selected Object<br>Edit                                                                                                             | To move the section pla<br>wherever you want on t<br>and use the "Parameter                   | ane, you ca<br>he part, or o<br>s for Comp | n drag and<br>edit the cor<br>ass Manipu | drop the<br>npass (i<br>ulation" | e compass<br>right click) |

Instructor Notes:

Copyright DASSAULT SYSTEMES



### **Exercise**

'Results Visualization' Recap Exercise



In this exercise you will use different visualization tools to view the analysis results that you have computed in the previously recap exercise. You will:

- Visualize the Principal Stress
- Visualize the Precision Plot
- Use the Cut Plane Analysis tool







In this lesson, you will learn how to use some tools for results exploitation

Publishing Advanced ReportsTo sum up



|              | About Advanced Reports 📓                                                                                                                                                                                                                                               |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | You can fully customize the report that you are going to publish.                                                                                                                                                                                                      |
|              | Once an object set has been computed (meaning that the "user-defined specifications" are converted into solver commands), all data contained in the object are ready to be used in the "subsequent finite element computation process" and the object can be analyzed. |
|              | Report X                                                                                                                                                                                                                                                               |
|              | The "Advanced Report Generation" dialog box gives you the choice between the analysis case                                                                                                                                                                             |
|              | you have computed                                                                                                                                                                                                                                                      |
|              | Advanced Report Generation                                                                                                                                                                                                                                             |
|              | Output directory: C:\tmp                                                                                                                                                                                                                                               |
|              | Title: Analysis1.CATAnalysis                                                                                                                                                                                                                                           |
|              | Choose the analysis case(s): Static Case                                                                                                                                                                                                                               |
|              | Frequency Case                                                                                                                                                                                                                                                         |
|              |                                                                                                                                                                                                                                                                        |
|              | OK Cancel                                                                                                                                                                                                                                                              |
| ន            |                                                                                                                                                                                                                                                                        |
| SAULT SYSTEM | Output directory: Pressing the button on the right gives you access to your file system for defining a path for the output Report file. You can edit the title of the report.                                                                                          |
| ht DAS       | Title: You can modify the title if desired.                                                                                                                                                                                                                            |
| Copyrig      |                                                                                                                                                                                                                                                                        |













| How to Refine a Global N                                   | Mesh Creation 🗵                                          |                         |
|------------------------------------------------------------|----------------------------------------------------------|-------------------------|
| Double-click either on the mesh sp<br>in the analysis tree | pecifications symbol or on the c                         | orresponding feature    |
| 2 Apply new values                                         | Ż                                                        | OCTREE Tetrahedron Mesh |
| 3 Click on "OK"                                            |                                                          | Size: 8mm 🚔             |
| You can define a Local size mesh a                         | ind a local sag:                                         | Element type            |
| 2' Click on the Local tab:                                 |                                                          | OK Cancel               |
| 3 Double-Click on "Local size"/"Local                      | al sag"                                                  |                         |
| 4 Select the local area (support)                          | OCTREE Tetrahedron Mesh                                  | <u>? × </u>             |
| 5 Enter a new value                                        | Global Local<br>Available specs :<br>Local size          | Local Mesh Size         |
| G Click on OK                                              | Local sag<br>Edges distribution<br>Imposed points<br>Add | Value 3mm               |
| pyright DASSAUL                                            |                                                          | Cancel                  |
| 8                                                          |                                                          |                         |







Instructor Notes:

Copyright DASSAULT SYSTEMES



| The user can define a local adaptivity specification to the second structure of the second structure o | on, to locally overload the global objectives.<br>cification. Local Adaptivity is optional but can be                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| defined using the contextual menu:<br>Materials.1<br>Materials.1<br>Adaptivities.1<br>Adaptivities.1<br>Static Case<br>Delete Del<br>Global Adaptivity.1 object<br>Local Adaptivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Local Adaptivity         Name       Local Adaptivity         Supports       No selection         Solution       Static Case Solution         Solution       Static Case Solution         Solution       Static Case Solution         Objective Error (%)       0         Current Error (%)       0         OK       Cancel |
| Local Adaptivity specifications can be applied on<br>A geometry group (elements connected to an<br>A box group<br>Box groups (cube or sphere) are easier to manipus<br>show the intersected part of the geometry. Beside<br>nature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a different types of groups :<br>edge, a surface, a vertex)<br>ulate: their volume is filled and made transparent to<br>es, they can be snapped on extrema, whatever their                                                                                                                                                 |











# Master Exercise: Frequency Analysis

You will practice concepts learned throughout the course by building the master exercise and following the recommended process

Crank Shaft Frequency Analysis: Presentation

Frequency Analysis on a Crank Shaft (1): Pre-Processing

Frequency Analysis on a Crank Shaft (2): Computation

Frequency Analysis on a Crank Shaft (3): Visualizing the Results






## INSTRUCTOR GUIDE



Instructor Notes:



Instructor Notes: