Introduction to Computer Aided Design (CAD) with Catia® V5 software

Exercises for students in: Mechanical Engineering 1st year
2nd year Materials Science and Engineering

Contents :

Theory :

3.1 Part Design 3.2

Sketcher
3.3 Drafting
3.4 Assembly Design

Exercises:

4. Basic exercise $n^{\circ} 1: 3 \mathrm{D}$ disk treep. 19 5. Basic exercise $n^{\circ} 2: 2 \mathrm{D}$ disk treep. 33 6. Basic exercise n ${ }^{\circ}$ 3: 3D gear wheelp. 597. Example of test 1p. 72 8. Basic exercise $n^{\circ} 4$: 2D gear wheeph .9:...
Basic exercise n n° : 3D bearing blockp. 85 10. Exercise 6t lamse n° bearing blockp. 102
5. Basic exercise $n^{\circ} 7$: screw ring
6. Basic exercise $n^{\circ} 8$: cylindrical wedge 13. Basic
.......p. 112 exercise $n^{\circ} 9$: int.
7. Basic exercise n° 10: outer lid.p. 12
8. Basic exercise $n^{\circ} 11$: half torus
9. Basic exercise $n^{\circ} 12$: spring washer
10. Test example $2 \ldots . . .$. p. 141 18. Basic exercise n° 13: 3D bearing.assqpmb4B
11. Basic exercise n° 14: 2D bearing assemblyp. 154 20. Additional exercisesp. 156

Complementary exercises:

21. Complementary exercise n° 1: Springp. 163 22. Complementary exercise n° 2: Helical pinion.........p. 174 23. Complementary exercise $n^{\circ} 3$: Connecting rodp. 182

Guidelines for Assembly Management: 24. File Naming
\qquad
25. Saving filesp. 190 26. Assembly structurep. 191 27eAsseptebly....... p. 191 28. Drawing example \qquad p. 193 29. Example of replacing ఖpdæ4 30 Transmission of files to another userp. 196 31. Managing file pah@巴s

1. Introduction

This handout is a collection of guided exercises that allow the student to acquire the practical bases of the graphic representation of parts and Computer Aided Design (CAD). The work is done using Catiaß V5 software. Based on a power transmission mechanism, it gives a procedure for drawing 3D parts, drawing 2D details for manufacturing, assembling 3D parts and drawing it for assembly. Some notions of methodologies are also presented on the design of parts as well as on the management of assemblies.

Thanks :

Benoît Carton, Mathieu Benoît, Thomas Göte McCarthy, Christophe Mattheeuws, Claude Ramseyer.
Writing - last update: Jennifer Gasparoux - August 2010
Contact: Jennifer Gasparoux, jennifer.gasparoux@epfl.ch
Daniel Kremer, daniel kremer@epflch
2. Graphic representation of the parts (source: Memotechplus: design and drawings)

2.1 Drawing format:

Formats usuels

Indications portées sur les formats

2.2 Inscription cartridge:

Emplacemen

Lorsque la feuille support du dessin est examinée en hauteur pour les formats pairs (A0, A2, A4) et en largeur pour les formats impairs (A1, A3), le cartouche d'inscription doit toujours se trouver, en sa pos tion de lecture, en bas et à droite, accolé au cadre extérieur du dessin (NF E 04-502).

Dimensions
Symbole de la disposition des vues
Le cartouche ne doit jamais dépasser en largeur 90 mm et en hauteur 277 mm .

$$
\rightarrow \text { (o) }
$$

Dispositions et contenu

- bord de la feville

2.3 Definition nomenclature: (memotech)

Elle peut être disposée sur une feuille indépendante ou sur le dessin lui-même. Elle peut contenir autant de renseignements qu'il est jugé utile d'y porter.

2.4 Scales: (memotech)

Désignation

Échelle 1	1	1
pour la vraie grandeur		
Échelle X		1
Epour r'agrandissement		
Échelle 1	:	X
pour la réduction		

Inscription
Indiquer toujours l'échelle à l'emplacement prévu dans le cartouche.

Désignation particulière

Échelles recommandées

Catégories	Indications				(*) Ces échelles ne sont pas recommandées car elles peuvent donner lieu à des impressions trompeuses à la conception.
Échelles d'agrandissement	200:1	250 : 1	500:1	1000: 1	
	20:1	25:1	$50: 1$	100:1	
	2:1 (*)	2,5:1	5:1	10: 1	Nota: - Seules les échelles en caractères gras ont été retenues à l'ISO. - Pour les dessins s'incorporant à des bâtiments, se référer à la norme NF P 02-002.
Vraie grandeur (échelle recommandée)	1:1				
Échelles de réduction	1:2 ${ }^{*}$ *)	1:2,5	1:5	1:10	
	1:20	1:25	1:50	1: 100	
	1:200	1:250	1:500	1:1000	
	1:2000	1:2500	1:5000	1:10000	

2.5 Element markers: (memotech)

Spécifications générales

- Les repères sont attribués de façon successive à chacun des éléments composant un ensemble.
- Tous les éléments identiques d'un même ensemble doivent être identifiés par un même repère.

Représentation

```
- Les repères sont composés de chiffres arabes. Ils peuvent être
    complétés par une lettre majuscule ( \(8 \mathrm{~A}, 8 \mathrm{~B}, 8 \mathrm{C}\)...);
    - utiliser des caractères de plus grande hauteur d'écriture que cell
    utilisée pour la cotation par exemple
    - inscrire chaque repère à l'intérieur d'un cercle (ou comme indique
    ci-contre);
- disposer les reperes en dehors du trace general des element
concernés;
    - adopter un ordre déterminant.
    ordre numérique
```

 ordre de montage possible,
 ordre d'importance (so
 tout autre ordre logique.


```
. Partie motrice
2. Cloche d'embrayage
4. Electro-aimant
4. Electro-aimant 
5. Arquature mobile
7.Écrou de réglage
```

. Fourrure amagnétique
Disques extérieurs
0. Bobine fixe

1. Bagues collectrices
2. Poussoirs de rappe
3. Accouplement élastique

2.6 Arrangement of views: (memotech)

Dénomination des vues

Méthode de projection du premier dièdre

- Vue suivant $F_{1}=$ vue de face
- Vue suivant $F_{2}=$ vue de dessus
- Vue suivant $F_{3}=$ vue de gauche
- Vue suivant $F_{4}=$ vue de droite
- Vue suivant F_{5}^{4} = vue de dessous
- Vue suivant $F_{6}=$ vue d'arrière

Positions relatives des vues

Par rapport à la vue de face $\left(F_{1}\right)$, les autres vues ont disposées comme suit

- celle de dessous (F_{5}), au-dessus
- celle de gauche (F_{3}), à droite
- celle de droite (F_{4}), à gauche
- celle d'arrière (F_{6}) peut être disposée à droite de $\left(F_{3}\right)$ ou à gauche de $\left(F_{4}\right)$, indifféremment.

Vues particulieres

La flèche indique le sens d'observation du dessin, par exemple lorsqu'une vue ne peut être disposée dans sa position normale.

Vues partielles

i, dans une vue, la representation de la totalité dun élément n'est pas indispensable à la compréhension du dessin, la vue entière peut être emplacée par une vue incomplète (voir dessin de a biellette ci-contre).

Vues locales
À condition que la représentation ne soit pas ambiguè, il est permis de se limiter à une vue locale à la place d'une vue complète.
Les vues locales doivent être dessinées en trait continu fort et doivent être reliées à la vue principale au moyen d'un trait mixte fin.

Correspondance entre les vues

Les vues, construites à partir des plans de projection perpendiculaires entre eux, sont alignées les unes par rapport aux autres.

On définit les trois règles de correspondances suivantes:

- Correspondances horizontales

Une dimension verticale sur la vue de face (exemple a) se retrouve verticale sur les vues de droite, de gauche et d'arriere.

- Correspondances verticales

Une dimension horizontale sur la vue de face (exemple b) se retrouve horizontale sur les vues de dessus et de dessous.

- Correspondances en équerre ou à 90°

Une dimension horizontale sur la vue de gauche ou de droite (exemple c) se retrouve verticale sur les vues de dessus ou de dessous.

Remarques

- Les lignes de rappel et les droites à 45° sont des aides efficaces lors de la construction de l'esquisse du dessin.
- Les cotes \mathbf{A} et \mathbf{B} indiquent le positionnement des vues dans le format. Elles se déduisent des dimensions «hors tout » de la pièce.

2.7 Cuts and sections: (mémotech)
 \section*{Coupe par un seul plan}

Généralités sur les hachures

L'intervalle entre les traits des hachures est fonction de hachurer.

Sections de faible épaisseur

Coupe brisée à deux plans concourants

A-A

Coupe locale

Sections rabattues sur place ou sorties

Demi-rabattement

Exécuté en trait mixte fin à deux tirets.

Pièce nervurée

Coupe dans l'épaisseur de la nervere mais non hachu-
rée.

Sections sorties successives (deux localisations possibles)

Surfaces planes

Parties situées en avant du plan de coupe

Cuts and sections: (continued)

Vues de pièces symétriques

Dans le but de gagner du temps et de la place, on peut représenter les pièces par une fraction de leur vue complète. La trace du plan de symétrie doit être repérée à chacune de ses extrémités par deux petits traits fins parallèles perpendiculaires à l'axe.

Vues interrompues

Pour gagner de la place, on peut ne représenter que les parties d'une pièce longue qui suffisent la définir.

Représentation simplifiée d'éléments répétitifs

Position des usinages

3. Introduction to the different Catia software tools

F1 key : Access to Catia help (you need an internet connection to access it)
The main workshops are:

Part Design

Design of 3D parts.

Sketcher

2D sketch drawing

Drafting
2D drawing

Assembly Design
Assembly of parts.

3.1

Part Design

The Part Design workbench allows you to create 3D parts. The generated files are products with .CATPart extensions.

Toolbar: (Only the most used tools are shown)
(d Sketch

Components from a sketch:

9 Extrusion
4 Extrude with drafts and fillets
50. Multi-extrusion

10 Revolution
Hole
(n) Groove

Q2. Multi-section solid
Skin components:

回	Poached
5	Pocket with drafts and fillets
-	Multi-pocket
-	Throat
4	Rib
09	Back smoothing

Processing Components:

Translation	
Sin	Spin
4	Symmetry

10	Mirror
Rectangular repeat	
O\%	

Miscellaneous components

(ㄷ)	Update	Point	\square	Plan
Catalog	Right			

3.2
 Sketcher

The sketching workshop is inserted in the part design workbench, it is selected automatically when a sketch is made.

Outline tools:

Outlines
Rectangles
Oriented rectangles
Parallelograms
Oblong contours
Oblong arches
Keyholes
Hexagons
Points

Basic circles
Circles by three points
Circles with coordinates
Tri-tangent circles by three points

Ellipses
Parable
Hyperbola
Conical
Right
Infinite line
Axes

Operations tools:

Projection of 3D elements
Intersection of 3D elements
Projection of 3D silhouette lines
Symmetry

Constraints tools:

Constraints from a Dialog
Dimensional constraints

Visualization of constraints:

$\llcorner\quad$ Perpendicular

- coincide
- Concentric

ย Vertical
\mathbb{H} Horizontal

Element colors in sketches:

White	Fluent
Red	Selected
Green	Constrained
Purple	Over-constrained
Brown	Incoherent

3.3
 Drafting

The Drafting workbench allows you to produce 2D parts. Generated files are products with .CATdrawing extensions

Toolbars：（Only the most used tools are shown）

Cartridge

Views：

Front view
Unfolded view
View from 3D
Projected view
Auxiliary view
Isometric view

可束	broken cup
新第	Unfolded cup
口1］	Broken section
犬 ${ }^{\text {d }}$	Unfolded section
（5）	Clipped view
侣	Clipped view with profile

Clipped view with profile

Detail view with profile
Setting up views with the wizard
Front，top，left view
Front，bottom，right view
All Views

Tolerances：

A Reference
莓 Geometric tolerances

Dressing：

T	Text
${ }^{T}$	Attached text
T_{4} （6）	Copy of text part number
\bigcirc	Partial reference
囲	Table
囲	CSV table

Center line seen from the front without reference
Center line seen from the front with reference
Center line seen from ends

Thread without reference

Thread with reference

Center lines seen from the front and seen from the ends

Notes：

Roughness symbol
Weld symbol
Welding

3.4 ㅈํㅇౖ Assembly Design

The assembly workshop allows to assemble already existing parts or to create parts from this workshop. The generated files are products with .CATProduct extensions.

Toolbars: (Only the most used tools are shown)

Structure :

Constraints:

Constraints on the assembly: Symbol in the tree

Inserting a new part
Inserting an existing component

4. BASIC EXERCISE 1: 3D DISK TREE

Start Menu > Part Design > enter part name: DISK TREE > OK
File menu $>$ Save $>$ (default location, or as indicated) $>$ file name: DISK TREE $>$ Save
CONSTRAINT > set dimension (
 window) > 2x on the diameter value, enter $38>\mathrm{OK}$

9. EXTRUSION > Type: Length > Length: $28>$ Selection: select the last sketch created, here Sketch. 1 (if not already selected by default) $>$ OK

Face to select as sketch plane for next step

Range Ø 00 mm for bearing support

face of the Ø 38 span that we want as the sketch plane (see figure p 20). The contours of this surface turn red.

SKETCH

CIRCLE > center on origin > any (circlediameter

CONSTRAINT $>$ set the dimension $>\mathbf{2 x}$ on the diameter value $>$ enter $30>0 K$
1 』 LEAVING THE WORKSHOP

3 9. EXTRUSION > Type : Length > enter $2>$ select the last sketch created (if it is not already selected by default) $>$ (reverse the direction if necessary, so that the extrusion is indeed created outside the solid already existing) >OK

Note : to display the object (either the sketch or the 3D object) centered on the screen, with an optimal zoom, several solutions:

- View menu > Center All
\dagger^{+}CENTER ALL (bottom of screen)

Range $\varnothing 25 \mathrm{~mm}$ length 76 mm

the face of the cylinder Ø 30 that we want as a sketch planeSKETCH
ت) CIRCLE $>$ center on origin $>$ any diameter (the circle turns red)
CONSTRAINT $>$ set dimension $>2 \mathrm{x}$ the diameter value > enter $25>\mathrm{OK}$〔

LEAVING THE WORKSHOP

19 EXTRUSION > Type : Length > enter $76>$ select the last sketch created, here Sketch. 3 (if it is not already selected by default) $>$ (reverse the direction if necessary, so that the extrusion is well created outside the already existing solid) $>$ OK

Note : Practice moving the piece using mouse shortcuts (see page 10)

Range Ø 24 mm length 58 mm

face of the Ø $\mathbf{2 5}$ cylinder that we want as the sketch planeSKETCH center on origin > any diameter (the circle turns red)
CONSTRAINT $>$ set the dimension $>2 x$ on the diameter value > enter $24>0 K$

LEAVING THE WORKSHOP

- 1

EXTRUSION > Type : Length > enter 58 > select last created sketch (reverse direction if necessary) > OK

Note: remember to save your work regularly (Ctrl + S)...

Throat $\varnothing 22 \mathrm{~mm}$: R 1 mm

YZ plane in tree view > the center anywhere (for better visibility, outside the room) $>$ next to the circle (the circle turns white)
Ut CONSTRAINT > enter 51 > OK
on the odds value > center of the circle > set the dimensionon the odds value > $>2 x$ enter $12>0 K$证 CONSTRAINT $>$ circle $>$ set dimension $>2 x$ diameter value $>$ enter $2>\mathrm{OK}$LEAVING THE WORKSHOP[GOBGE
First angle: 360 deg, Second angle : 0 deg $>$ Profile/Surface, Selection : last sketch created (Sketch.5) > Axis, Selection :
the axis of revolution of the $\varnothing 24$ span $>$ OK

Keyway on Ø 24 seat

Creating the key outline using two arcs and two straight lines.

Note : in some cases, you may not want to create automatic constraints such as the coincidence constraint represented by the symbol. .In this case, the Shift button must be held down while the sketch is being made.
\square RIGHT > draw two lines connecting the extremities of each of the 2 bows. To be sure that the extremities of the straight lines coincide well with the extremities of the arcs, bring the mouse close enough to the point to see the symbol appear.

- before clicking on the left to set the point on the line.

Keyway Stresses \& Dimensioning
on one line > keep the Ctrl key pressed and on the other line (the two selected elements turn red) $>$ release the Ctrl key.
(4) 氙i selecteo constrants in a dallog box
enable Verticality > OK
on a straight line > keep the Ctrl key pressed and on an arc (the two selected elements turn red) $>$ release the Ctrl key.
T) SELECTED CONSTRAINTS IN A DIALOG BOX enable Tangency > OK

Repeat the operation until the 4 extremities of the lines are tangent to the arcs (the symbol must appear forl each tangency).话 CONSTRAINT >end of span $\varnothing 24$ >
 odds $>2 x$ on the dimension value $>$ enter $5>0 K$$\square$ STRESS $>$ dimensiona bow >
 on the value > enter 40 > OKCONSTRAINT > a line >
 on the dimension value $>$ enter $8>$ OK

IMPORTANT: If the ends of the lines and the arcs do not coincide:

on the end of the line $>$ keep the Ctrl key pressed and (the two selected points turn red) > release the Ctrl key.
\geqslant SELECTED CONSTRAINTS IN A DIALOG BOX > activate Coincidence > OK

Repeat the operation until the curve is closed.
on the end of the arc

IMPORTANT: NOTES - The

sketch is fully constrained if all the lines are green- If some lines
are white, the sketch is not fully constrained: the entire sketch must then be constrained by setting the missing dimensions and constraints.

- If some lines are in purple, the sketch is over-constrained: the over-constraints must be eliminated as_son_asthey_appear

LEAVING THE WORKSHOP

廌 POCKET >
Plus >>

First Limit / Type: Until Next >
Second limit / Type: Length > Depth: enter-8>OK

Note: When no second limit is entered, the pocket starts from the plane chosen to draw the sketch (in this case, the XY plane located at the center of the part) up to the First limit.
When you enter a positive value for the Second limit, the pocket starts before the sketch plane. When we enter a negative value (our case) for the Second limit, the pocket starts after the sketch plane.

6 M6 tapped blind holes

 (0) HOLE}face of the $Ø 38$ span (the hole appears in red), if necessary rotate the part to see the face in question appear (see page 10)green arrows of the hole (hold down the button) and move the hole so that it is no longer in the center of the room.Extension tab : Blind > Bottom : V -shaped
Type tab: Simpletab : Thread definition : activate:
Threaded Type : Metric Coarse Pitch Ref. thread : M6 Prof. thread : 10 mm Depth. hole : 15 mm Enable: Not straight

Extension tab >

Editing the sketch

vertical axis $\mathbf{V}>$ hold down the $\mathbf{C t r l}$ key $>$ Ctrl key
dot (both selected items turn red) $>$ drop the

SELECTED CONSTRAINTS IN A DIALOG BOXCoincidence > OK (the symbol appours) on the point > set the dimension >
\qquad
$2 x$ on odds value $>$ enter 14LEAVING THE WORKSHOP>OK

Circular repeat

Hole. 1 in tree view (hole turns red)\%
CIRCULAR REPEAT
(rear
tab: Axial reference Parameters: Whole Crown Instances : enter 6

Reference direction : $\varnothing 38$ span enable: Keep specifications
>OK
(If needed Plus and Toggle)
> okay

Chamfer $0.5 \times 30^{\circ}$

edge to be chamfered (the edge turns red) (do not hesitate to zoom in to select the edge)

Mode: Length1/Angle
Length 1 : enter 0.5
Angle : between $30>$ (reverse direction if necessary) $>$ OK

APPLICATION OF MATERIALS

舀 APPLICATION OF MATERIALSAc improvement tab >34 Cr Ni Mo 6
Main body in tree view (part outline turns red)

Apply Material > OK

File menu > Save

Note The
tree was made by drawing one staff after another, we could have drawn it in one step using the revolve function .

Start menu > Part Design > enter the name of the part: TREE DISK $2>$ OK
File menu > Save > (default location, or as indicated) > file name: TREE DISK $2>$ Save

Using the drawing tools, draw the half-profile of the tree and set the necessary dimensional constraints.

[〕 LEAVING THE WORKSHOP

H) REVOLUTION

Axis > Selection: select the axis of revolution (the H axis) $>\mathrm{OK}$

We thus obtain the disk tree in a single step. All that remains is to draw the holes and the groove as before.

5. BASIC EXERCISE 2: 2D DISK TREE

FINAL RESULT

File menu > New > Drawing > OK > Standard : DETAIL_ISO_R18 > Sheet style: A4 ISO > Landscape > OK File menu > Save > L: catia > file name : DISK TREE > OK

File menu > Open > L: catia >DISK TREE.CATPart > Open

Window menu > Horizontal Tile

Two windows are then visible on the screen: - the
drawing or 2D window - the part or 3D
window

(Hold) the view frame and move the part in the layer to the desired location.next to the view to confirm the position.

Now, for better visibility, minimize the 3D window and enlarge the 2D window so that it takes up the whole screen.

Note : To change the scale of the drawing, >

on the red frame of the drawing Properties $>$ View tab $>$ Scale > enter the desired scale > OK. (in this case, you have to work on a 1:1 scale, which must already be the case)

To insert the cartridge:
\square CARTRIDGE CREATION > The A4 cartridge appears with the name DISC SHAFT.

To modify the title block,
EPFL_Drafting tab, then twice on the box of the title block to be modified. To come back,

Layer tab. 1.

PROJECTED VIEW (behind FRONT VIEW) > place the view to the right of the room.
哪, BROKEN CUT
On the horizontal axis of the front view (on the left of the part) $>2 x$ on the axis (on the right of the part) > lay the cut

Hide the letters A indicating the cut: on the elements in question > hide/show (or on the element > space bar)

Note:-tمretrieve hidden items:
View menu > Hide/Show > Show Hidden/Shown Objects
Then on the object and hide/show.
To return to the displayed objects: View menu > hide/show > Show hidden/displayed objects

(Where \square located at the bottom of the screen)

Checking links: File menu > Desktop (the two linked documents are side by side)
Tho
close office

Tools menu > Analyze > Show Geometry in All Viewpoints

Drag the cursor over the different views of the 2D Window and observe the highlighting on the 3D Window.
Close the 3D window.

IMPORTANT : before dimensioning the figure, select the frame of the view you want to dimension > the working frame turns red.

FRONT VIEW DIMENSION

Keyway

QUOTATIONSleft archright arc

Hold down the Ctrl button and point the mouse at one of the yellow diamonds. (The positions 1234 indicate the anchoring places of the dimension line).

With Ctrl still pressed, you will navigate to \#4 (outside the groove)
(and hold) one of the yellow diamonds that

Turn let go and do the same with the other diamond.
next to the view to confirm the position of the dimension.

Proceed in the same way to dimension the distance (5) from the key to the end.

$\stackrel{H}{\mu}$

```
QUOTATIONS
```

The two parallel lines > Set the dimension
next to the view to confirm the position of the dimension.

Note : when defining the dimension, to prevent the writing from following the mouse cursor, press Ctrl when selecting the surfaces associated with the dimension.
on the previous dimension (8) > Properties > Tolerance tab
> Main value: 10H7 TOL_ALP1
$>$ First value : N9 (enter this value manually) > OK

next to the view to confirm the position of the dimension.

Execution of horizontal dimensions 58, 134, 136 and 164

客STACKED QUOTATIONS (behind quotations)
the shaft end line (which will serve as a reference) >
the first edge to be dimensioned $(58 \mathrm{~mm})>$
the second edge to be dimensioned $(134 \mathrm{~mm})>$the third edge to be dimensioned (136 mm)
$>$ the last edge to be dimensioned (164mm)

Set dimensions >
next to the view to confirm the position of the dimension.

Note : Subsequently, it is advisable not to use the Stacked dimensions option. This option does not allow you to modify or delete a single dimension, you must delete all the stacked dimensions and redo them.

Execution of vertical diameter dimensions $\varnothing 240 /-0.02, \varnothing 25, \varnothing 30, \varnothing 38$ 0/-0.02

In the same way, carry out the other dimensions of diameter $\varnothing 25$ 0/-0.02; $\varnothing 30 ; \varnothing 38$ 0/-0.02.

the upper line of diameter $\varnothing 25>$ set the reference $>$ enter $\mathbf{A}>$ okay

Execution of roughness symbols.

ROUGHNESS SYMBOLthe upper line of the diameter $\varnothing 25$ (positioning of the anchor)Contact Roughness (Circle) or No >
symbol without circle

Execute the other symbols in the same way.

CUP QUOTATION

Activate section view (2x on the Cup frame: the frame turns red)

Keyway depthQUOTATIONSthe bottom of the keyway >
the outer edge of the shaft > Set the dimension
next to the view to confirm the position of the dimension.

Dimensions 51, R1, Ø22 of the throat.

QUOTATIONSthe shaft end line >
the back of the groove > Set the dimension.
next to the view to confirm the position of the dimension.$\stackrel{R}{\leftarrow}$
RADIUS QUOTATIONS
the back of the groove > Set the dimension
next to the view to confirm the position of the dimension.

 QUOTATIONS}
in Tool Palette > Force Vertical Dimension in View.back of the throat up.

Note:As_explained previously: move the yellow diamonds to position 4, in order to obtain the desired dimension 22

back of the throat down.

Ask the dimension

dimension 22 > properties > tab Texts of the dimension > Prefix : choose the symbol \ddot{y}

next to the view to confirm the position of the dimension.

Dimensions of the depths of the holes and threads M6
QUOTATIONS
the line of the shaft end and the edge to be dimensioned

in Tool Palette >

Force a horizontal dimension in the view
> Set the dimension > next to the view to confirm the position of the dimension.
畒

TAPPING DIMENSIONS (behind DIMENSIONS)

a line of the M6 thread.
Dimensions M6 and 10 appear,
Position the dimensions.

dimension M6.

the red triangle after $6>$ Text after $>$ enter $(6 x)>O K$
next to the view to confirm the position of the dimension.

the edge of the shaft end (positioning of the anchor)

Place the start of the geometric tolerance symbol.

In Tolerance,
symbol

(single beat)
> Tolerance : enter 0.01
> Reference : enter A
>OK

Adjust position

Modification of the anchor

In order to modify the type of anchoring of the tolerance, it is necessary to use the yellow diamond
white circle and/or square

(maintained) the yellow diamond: it is then possible to move the anchor along the surface.
(maintained) the white square: it is then possible to move the square horizontally.
(held) the circle: it is then possible to move the anchor on the box
next to the view to confirm the position.

LEFT VIEW DIMENSION

Enable left view : $2 x$ view frame (the frame turns red)

Modification of the center lines of the threads.

Erase all centerlines: the centerlines to be deleted $>$ press the Delete key on the keyboard.

$\stackrel{』}{\leftrightarrows}$
DIAMETER QUOTATIONScircumference of the centers of the tapped holes > Set the dimension
next to the view to confirm the position of the dimension.

horizontal axis > axis of the tapped hole $>$ set the dimension
next to the view to confirm the position of the dimension.

Activate Front View (2x on the frame of the view, which turns red), DETAIL VIEWto set the center of the detail circle >

Reposition if necessary the name of the detail (B)

7

巴 on detail frame > Properties > Scale; enter 5:1 > OK

Chamfer dimensions in the detail view

Activate Detail View (2x
on the frame of the view, which turns red)

Dimension the width of the chamfer.
chamfer edge >

Angular sector > Sector 3
Ask the dimension
next to the view to confirm the position of the dimension.

$\mathrm{T}_{\text {, TEXT }}$

text position > Text Editor > Enter DETAIL B, 5:1 > OK Adjust text positionnext to the view to confirm the position of the text.

Editeur de texte

-

```
c
```

0 OK 9 Annuler
\# T TEXTtext position > Text editor > Enter text below > OK . (to go to the line press Shift + Enter)
Adjust text position
next to the view to confirm the position of the text.

Chanfreiné $0,2 \times 45^{\circ}$
Text to enter \qquad Tolérances générales:
NF EN 22768 -m
(ISO 2768 -m)

Run General Roughness Symbols

ROUGHNESS SYMBOLabove the cartridgeNumber or text: enter Ra 3.2
above the cartridge (to the right of the previous symbol)
Number or text: enter parenthesesOkay

Adjust positionsnext to the view to confirm the position of the texts.

File > Save NF EN $22768 \cdot \mathrm{~m}$ (ISO 2768 -m)

6. BASIC EXERCISE 3: 3D GEAR WHEEL

FINAL RESULT

Construction process : > Creation of spans \& holes > Creation of the teeth

Select = click once with the left mouse button

Start menu > Part Design > enter the name of the part: GEAR WHEEL > OK
File menu > Save > L: Catia > file name: GEAR WHEEL > Save

SPAN Ø 75.55 mm

the $\mathbf{Z X}$ plane in the tree structure

CIRCLE > place the center on the origin = approach the origin with the cursor until the symbol appears (coincidence betweer ${ }^{\text {Fwo points), }}$
o set the center > circle
anywhere in the window to put the of any diameter.CONSTRAINTS $>$ set dimension $>\mathbf{2 x}$
on the diameter value > enter 75.55 > OK

LEAVING THE WORKSHOP
EXTRUSION > Type: Length > enter 16 > OK
\uparrow

SPAN Ø 43 mm

the face of the $\varnothing 75.55$ span as the sketch plane(1) 弘 SKETCH\odot CIRCLE $_{>}$ the center on the origin > anywhere in the window to place the circle of any diameter.

UTV CONSTRAINTS $>$ set the dimension $>2 x$ on the diameter value $>$ enter $43>\mathrm{OK}$LEAVING THE WORKSHOP

回
EXTRUSION > Type: Length > enter $3>0 K$

HOLE Ø 39 mm

(0) HOLEface of the $\varnothing 43$ staff (the hole appears in red)Extension tab : Up to next > Diameter : $39 \mathrm{~mm}>$ OK

Note : By default, Catia places the hole in the center of the chosen surface; if this is not the desired location, you must dimension the center of the hole by going to Edit the sketc臨

4 HOLES $\varnothing 4.3 \mathrm{~mm}$, BLADES $\varnothing 8 \mathrm{~mm}$ prof. 4.5 mm

(0) HOLE

the face of the $\varnothing 75.55$ span (opposite the $\varnothing 43$ span)Several topological error messages > OK (the hole is empty: no material to remove)
$\mathcal{T}_{\text {Extension tab }}$ Up to next > Diameter : $\mathbf{4 . 3} \mathrm{mm}$

Type tab : Blade > Diameter: 8 mm > Depth : 4.5 mm
Extension tab >

Editing the sketch(and hold down) on the center of the hole and move it to facilitate dimensioning

on the point $>$ set the dimension $>\mathbf{2 x}$ on the dimension value $>$ enter $27.5>\mathrm{OK}$on the point (two selected elements turn red) > drop the
on the vertical axis $\mathbf{V}>$ hold down the $\mathbf{C t r l}$ key and Ctrl key氙 SELECTED CONSTRAINTS IN A DIALOG BOXCoincidence > OK〔. LEAVING THE WORKSHOPokay

CIRCULAR REPEAT

$>2 x$ Escape/Esc to no longer have a selection (no more items in red) (or

Hole. 2 in tree view (hole turns red)\% CIRCULAR REPEAT (behind
(2
Axial reference tab
> Parameters: whole crown
> Instances: 4
$>$
Reference element : face of the $\varnothing 75.55$ span (opposite to the $\varnothing 43$ span) > Enable Keep Specifications >OK
230 ROUE DENTEE

CREATION OF THE T5 TYPE TEETH WITH 48 TEETH

(Toothed belt Z48T5)

Calculations:

Pitch: pb = 5 mm
Number of teeth: z = 48
Tooth height: ht $=1.2 \mathrm{~mm}$
Distance between 2 teeth (top of the tooth): $\mathrm{s}=2.65 \mathrm{~mm}$ Angle between 2 teeth: $2 \ddot{y}=40^{\circ}$ Radii int. and ext. of the teeth: $\mathrm{rb}=\mathrm{rt}=0.4 \mathrm{~mm}$ Distance from the top of the tooth to the pitch diameter of the belt: $u=0.42$

Diameters:

Pitch diameter of the belt: $\mathrm{d}=\mathrm{pb} 48 / 3.14$ 苂群. 394
Outside diameter of the crown: $\mathrm{d} 0=\mathrm{d}-2 \mathrm{u}=76.394-2^{*} 0.42$ ÿ 75.554
Inside diameter of the crown: $\mathrm{di}=\mathrm{d} 0-2 \mathrm{ht}=75.554-2 * 1.2 \mathrm{y} 73.154$

Angles:

Pitch angle: $\left(360^{\circ} /(\ddot{y} \quad \mathrm{~d})\right)^{*} 5=7.5^{\circ}$ or $360^{\circ} / 48=7.5^{\circ}\left(=2^{*} 3.75^{\circ}\right)$
Angle between 2 teeth (top of the tooth): ($360^{\circ} /(\ddot{y} \quad$ d) $) *$ 2 66993$) .975^{\circ}(\ddot{y}$

Preliminary remarks :

Teeth:

- The bottom of the tooth is an arc of a circle of \varnothing
73.15 mm - The top of the tooth is an arc of a circle of \varnothing
75.55 mm - The lines that are not used for the pocket must be construction lines (lines dotted) - The curve that delimits the pocket does not necessarily have to be closed, but its ends must be outside the part.

Creation of the sketch:

the $\mathbf{Z X}$ plane in the tree structure \gg SKETCH

BUILDING FEATURES:

the origin = approach the origin with the cursor
until the symbol appears (coincidence between two points)
outside the room (top right) > Construct 3 straight lines in this way
leftmost right >

CONSTRAINTS chosen in a dialog box >

middle right > set dimension$>2 x$ angle value $>$ enter $1.99^{\circ}>\mathrm{OK}$
(1) \#, CONSTRAINTS >
vertical line > set the dimension

$>2 x$ angle value $>$ enter $3.75^{\circ}>\mathrm{OK}$ II
$2 x$ a line > activate Construction element > OK
$>$ Do the same with the other 2 straight lines (the lines become dotted)
>Hold down the Ctrl key and select the two non-vertical lines

Note : During the symmetry operation, the previously established constraints will be taken into account.

Parmitres
longuer : $55,095 \mathrm{~mm}$ Ande: $86,25 \mathrm{deg}$ 图
-5 Element de construction

CONSTRUCTION OF A HALF TOOTH (without roundings):

Tip : Don't hesitate to zoom in / zoom out to set the points.
on the origin >
right of
construction (2) and vertical line (cf. image on the right) (the symbol must appear to indicate the coincidence)

17 HI CONSTRAINTS $>$ set dimension \gg Radius object > Definition > Dimension : choose diameter > Diameter: enter 75.55 > OK

/. RIGHT >

left end of the arc >CONSTRAINTS >on the previous right andbottom left as shown in the figure above.on the leftmost construction line > set the dimension >
$2 x$ on the angle value $>$ enter $20^{\circ}>\mathrm{OK}$

ARC OF CIRCLE >
the last straight line built andon the origin > left end of construction line (1)诸 CONSTRAINTS $>$ set the dimension $>$ put a diameter of 73.15 as before > OK

CONSTRUCTION OF THE OTHER HALF TOOTH:

Proceed by symmetry to build the other side:
> Select the part to reproduce while holding down the Ctrl key (6 elements)
(1) MIRROR >
the vertical construction line (the middle line)

Then close the sketch:

Note:The_last arc made is white, which means the sketch is not fully constrained. It is therefore necessary to apply any diameter to this arc, so that it is greater than the diameter of the wheel.

LEAVING THE WORKSHOPPOACHED
> Type: Up to next (reverse direction and side if necessary)

Preview, if the result is satisfactory (figure beside) > OK

CIRCULAR REPEAT:

Pocket. 1 in tree view (pocket turns red)\%. CIRCULAR REPEAT
Axial reference tab
> Parameters: Whole Crown
$>$ Instances : enter 48
$>$ Reference direction: \varnothing the face of the staff 75.55 > Disable: Keep specifications
>OK

MATERIAL APPLICATION

佥 APPLY MATERIALSAc improvement tab > 34 Cr Ni Mo 6 in the Main Body tree
(The outline of the part turns red)
Apply Material >OK

品

File > Save

7. EXAMPLES OF TEST 1

8. BASIC EXERCISE 4: 2D GEAR WHEEL

FINAL RESULT

File menu > New > Drawing > OK > Standard: DETAIL ISO > Sheet style: A4 ISO > Orientation: Portrait > OK
File menu > Save > L : Catia > file name: GEAR WHEEL > SaveLayer (in tree) > Properties > Scale: 2:1 > OK

File menu > Open >
GEAR WHEEL.CATPart > Open
Window menu > Horizontal Tile
in the Drawing window (GEAR.CATDrawing)
ZX plane of the 3D window (GEAR WHEEL.CATPart): The selected view is displayed in 2D.

Using the tool
 , rotate the front view so as to obtain the same view as that of the figure opposite
(Hold) the frame and move the piece to the left of the A4 sheet
next to the view to confirm the position.

The A4 cartridge appears on the screen.
The name of the GEAR WHEEL drawing appears in the title block. To modify the cartridge, proceed as explained on page 36 .BROKEN CUT >
on the vertical axis of the part (above the piece)
$>2 \mathrm{x}$ on the vertical axis of the room (below the room > plan (A4 sheet) to place the cut.

View > Toolbars > Analyze > >Show geometry in all viewpoints

on the different views (front view and section)
This tool allows you to visualize the position of the 3D part for each view of the drawing.

ISOMETRIC VIEW (behind FRONT VIEW) >

on "WHEEL
DENTEE" (in the tree structure of the 3D window) > choose the view where you can see the most details (see figure)

Position the view somewhere outside the A4 sheet >
next to confirm

the position $>\mathbf{2 x}$ on this view > \square on the frame of this view > Properties > Scale: 1:1 > OK Reposition the view on the A4 sheet, at the bottom left of the section.

Checking linksFile menu > Office > check that the two documents are side by side

close office

DIMENSION OF THE BROKEN CUT For

more visibility now, you can shrink the 3D window and enlarge the Drawing window.

Activate view frame (2x

QUOTATIONS

Create dimensions 4.5; 19; 3

Create Ø 8; Ø 4.3; Ø55; Ø39; Ø43; Ø 75.55

تi. on the $\boldsymbol{\varnothing} \mathbf{8}>$ Properties > Dimension texts tab $>$ to the right of Main value enter ($\mathbf{4 x}$) $>$ OK

Do the same with $\varnothing 4.3$
Propriétés
Sélection : Cote.8/DrwDressLU. 1//Coupe A-A
Tolérance | Ligne de cote | Ligne de rappel Textes de la cote \mid Police Préfixe - Suffixe
$\longdiv { \text { CDIAMETER> } \varnothing \text { , Valeur principale } \square = 1 1 }$
Textes Associés

in $\varnothing 55$ > Properties > Tolerance tab > Main Value: select ${ }^{+6}$ TOL_NUM2 >
Upper value : enter $+0.2>$ Lower value : enter - 0.2 > OK

Do the same with \varnothing 39; Ø 43 (see the image on the right for the corresponding tolerances)

LAW

Create a horizontal line above the wheel（the line must be longer than the thickness of the wheel） If necessary，it is possible to deactivate the snapping of the points，which allows greater flexibility for setting the line；to this，click on the icon蓓。

巴
 On the right＞Properties＞Chart tab

＞Line： 4 ＞Thickness： 2 ＞OK
$2 x$ on the right（Editing the right）
$>$ End $1>$ V： $38.175>$ End 2
＞V： 38.175 ＞OK（leave default values for H ）

LAW

Create a horizontal line above the wheel（the line must be longer than the thickness of the wheel）

On the right＞Properties $>$ Chart tab
＞Line： 4 ＞Thickness： 2 ＞OK
2 x on the right（Editing the right）
＞End 1 ＞V： 36.575 ＞End 2
＞V： 36.575 ＞OK（leave
default values for H ）

Select the two lines (
pressed >
right $\mathbf{1} \boldsymbol{>}$ hold the $\mathbf{C t r l}$ key the right 2
horizontal axisDIAMETER QUOTATIONS >
$\stackrel{\circledR}{\leftrightarrows}$ DIAMETER QUOTATIONS >

- 6.35 dimension > Properties > Dimension text tab $>$ to the left of Main Value enter (dprimitive $>$ to the right of Main Value enter) $>\mathrm{OK}$

To hide the \mathbf{h} symbols above the created lines,
symbols and space bar.

$\stackrel{8}{*}$
 ROUGHNESS SYMBOL

Inner surface ($\varnothing 39$) of the gear wheel > enter N6 above the symbol > Choose the Roughness symbol corresponding to the figure opposite $>\mathbf{O k}>$ position the symbol

In the same way, place the Roughness symbol N7 as shown in the figure opposite.
Note : for more details on the standardization of these symbols, see the Fanchon (pages 116-117)$\stackrel{\ulcorner }{\bullet}$ ATTACHED TEXT (behind TEXT)
the corner of the $\mathbf{\varnothing} 43$ span > enter R Max 0.4 > OK (position the anchor as needed)
REFERENCE
the inner surface ($\varnothing 39$) of the toothed wheel > set the reference > enter $\mathbf{A}>\mathrm{OK}$
GEOMETRIC TOLERANCE (behind REFERENCE)the straight surface of the toothed wheel ($(75.55)>$ Select the symbol single beat $\xrightarrow{\sim}$ > Tolerance: 0.03 > Reference: $\mathrm{A}>\mathrm{OK}$ (Position the anchor if necessary)

Note: for more information on geometric tolerances: Fanchon (chapter 10)

- the text as needabbve the title block > in Text editor write: Characteristics:...(see the image below) > TEXT > OK (position
$13 \mathrm{~T}_{\mathrm{V}}$ TEXT >
above the cartridge > in Text editor write: General tolerances:...(see the image below below) > OK (position the text as needed)$\stackrel{\otimes}{\checkmark}$ ROUGHNESS SYMBOL
above the title block > enter N9 above the symbol > Choose the Roughness symbol corresponding to the figure below below > OK (position the symbol if necessary)

		Caractérisiaques :Type $\overline{5} 5$nb de dents $\mathrm{z}=48$			Tolérances générales: NF EN 22768 - m (ISO 2768 - m)		$\stackrel{\text { N9/ }}{ }$
			=	${ }^{\text {cor } 2 \times 00}$		meta	2:1
			-				1
						A4	1
		ROUE DENTEE					
(fifl							

File menu > Save

9. BASIC EXERCISE 5: 3D ROLLING BLOCK

FINAL RESULT

Start Menu > Part Design > enter part name: BEARING BLOCK > OK
File menu > Save > L: catia > file name: BLOCK BEARING > Save

REALIZATION OF THE BLOCK $82 \times 82 \times 70$

the $\mathbf{Z X}$ plane in the tree structure >\square RECTANGULAR >
for the 1st corner
for the 2nd corner.
on the odds value, enter 82
H. CONSTRAINTS > > okay
on each of the vertical sides of the rectangle $>$ set the dimension $>\mathbf{2 x}$
on each of the horizontal sides of the rectangle $>$ set the dimension $\mathbf{>} \mathbf{2 x}$
on the odds value, enter 82

the other vertical side andthe vertical axis \mathbf{V} on one of the vertical sides of the rectangle > keep the Ctrl key pressed: (the three selected elements turn red) > release the Ctrl key

Note: Select items in the order listed! Otherwise the block will not be centered on the origin.島 SELECTED CONSTRAINTS in A BOX OF dialogueSymmetry and verticality > OK
on one of the horizontal sides of the rectangle > keep the Ctrl key pressed:
[1
horizontal and the horizontal axis \mathbf{H} (the three selected elements turn red) $>$ release the Ctrl key

Note: Select items in the order listed! Otherwise the block will not be centered on the origin

SELECTED CONSTRAINTS IN A DIALOG BOX

Symmetry and horizontality > OK

LEAVING THE WORKSHOP
9. EXTRUSION > Type : Length > enter 70 (reverse direction if necessary) > selection: last sketch created
okay

THROUGH HOLE Ø 43 BLADE Ø 47 prof. 66mm

(0) HOLE

a square face of the block (the hole appears in red) and the Hole Definition window appears
Extension tab: Up to next > Diameter : 43mm

Edition de l'esquisse

```
"/a
```

vertical edge $>$ set dimension $>\mathbf{2 x}$ 41 > okay
hole center (white dot) >
aCONSTRAINTS >
hole center >
on the odds value, enter
horizontal > set dimension > 2 x on the odds value, enter 41 > okayLEAVING THE WORKSHOP (we find the definition of the hole)

Type tab : Laminate $>$ Diameter : $\mathbf{4 7} \mathrm{mm}>$ Depth : $\mathbf{6 6} \mathrm{mm}>\mathrm{OK}>\mathrm{OK}$

4 BLANK HOLES TAPPED M4 x 10/15

the face of the block opposite to the one chosen previously (the hole appears in red)
Extension tab : Blind > Bottom: V -shaped

Type tab : Simple

Thread definition tab

Type : Metric Coarse Pitch >
Ref. thread : M4 >
Teacher. thread : $10 \mathrm{~mm}>$
Teacher. hole : $15 \mathrm{~mm}>$
activate: No right > OK
Extension tab >
ت医 Editing the sketch
on the center point of the hole, keep it pressed and move it from the origin of the axesbeside the view

? PROJECTION OF 3D ELEMENTS

Rotate (page 10) the view so that you can see the inside of the bore made previously
cylindrical face of the through hole $\varnothing 43>$ a white line appears, it represents the axis of the
 selected surface.

Note: The Project 3D Elements operation projects 3D elements into the sketch.
Here, this operation made it possible to project the axis of the cylinder on the plane of the sketch. A point is thus obtained which appears in red.

To return to the sketch plane :
TI
今
NORMAL VIEW located at the bottom of the screen.

RIGHT > draw a line between the red point (projected previously) and the center of the hole (white point)
beside the view

Note : the straight line automatically becomes Construction element (straight in dotted)line previously created >
horizontal axis > set dimension $\mathbf{>} \mathbf{2 x}$ on the dimension value > enter $45^{\circ}>\mathrm{OK}$CONSTRAINTS > straight line previously created $>$ set the dimension >

2x on the dimension value > enter 27.5 > OK
LEAVING THE WORKSHOP (we find ourselves in the definition of the hole)

Circular repeat

3 Hole. 2 (= last hole created) in the tree structure (the hole turns redCIRCULAR REPEAT

Axial reference tab > Parameters: Entire crown $>$ Instances : enter $4>$ Reference element :
the cylindrical face (Ø43) of the block > activate: Keep specifications

4 BLANK TAPPED HOLES M6 x 10/15

the face of the block opposite the 4 previous holes (the hole appears in red)Extension tab : Blind > Bottom: V -shapedType tab : SimpleThread definition tab
enable: Tapped $>$

3)bloc roulement - Plan $x y$ - Plan yz - Plan $z x$ - 3 Corps principal Set géomérique. 1

on the center point of the hole, keep it pressed and move it from the origin of the axes (without this operation, the following dimension is not valid, it is seen as overstressed)

Rotate (page 10) the view so that you can see the inside of the bore made previously
cylindrical face of the through hole $\varnothing 43>$ a white line appears, it represents the axis of the selected surface.

To return to the sketch plane

NORMAL VIEW located at the bottom of the screen1
RIGHT > draw a line between the red point (projected previously) and the center of the hole (white point)
beside the view

Circular repeat

Hole. 3 (= last hole created) in the tree structure (the hole turns red)\%้\% CIRCULAR REPEAT

Axial reference tab > Parameters: Entire crown > Instances : enter $4>$ Reference element :
the cylindrical face (Ø47) of the block > activate: Keep specifications

4 THROUGH HOLES Ø 6.5

(0) HOLEa block face y to the previously chosen face.Thread definition tab : Deselect thread

Type tab: Simple
Extension tab : Up to next > Diameter : 6.5 mm芼
Editing the sketch horizontal edge of the face

$>$ set the dimension $>2 x$ on the dimension value > enter $10>$ OKCONSTRAINTS >
vertical edge of the face on point > set dimension $>\mathbf{2 x}$ on the dimension value $>$ enter $10>\mathrm{OK}$

LEAVING THE WORKSHOP
okay

Rectangular repeat

Hole. 4 (=last hole created) in the tree structure (hole turns red)㵄, RECTANGULAR REPEAT
tab: First direction >
Settings: Instances \& Spacing > Instances : enter $2>$
Spacing : enter $62>$
Reference direction :
Plan on which was placed the hole > Reverse direction if necessary activate: Keep specifications

Second direction tab >

Settings: Instances \& Spacing >
Instances : enter $2>$
Spacing : enter 50 > Reverse direction if necessary
okay

Répétition rectangulaire		?
Première direction	Seconde direction	
Paramètres: ${ }^{\text {Instances \& espacement }}$		
Instances: 2 圁		
Espacement: 50 mm		-
Longueur: 50 mm		- 59
Direction de référence Elément de référence: Plan xy		
Inversion		
Objet à copier \qquad Objet d'ancrage: Trou. 4 Conserver les spécifications		
		Plus>>
$\bigcirc \mathrm{OK}$	Annuler	Apergu

2 BLANK HOLES Ø 6

(0) HOLE

the same face of the block as before (the hole appears in red)Extension tab : Blind > Diameter : enter 6 > Depth : enter 12 > Bottom: In V
Type tab: Simple

okay

Rectangular repeat

Hole. 5 in the tree
Second direction tab >

Settings: Instances \& Spacing > Instances : enter 2 >
Spacing : enter 50 >
Reference direction : Plane on which the hole was placed > Reverse the direction if necessary activate: Keep specifications
First direction tab >

Settings: Instances \& Spacing > Instances : enter 1 >

BEVELS

CHAMFERMode: Length1/Angle >
Length 1 : enter 1 >
Angle : between 45 >

Objects to be chamfered: edge facing the outer face of the $\varnothing 43$ hole.

Repeat the operation for the edge facing the outer face of the $\varnothing 47$ hole.

APPLICATION OF MATERIALS

穴
 APPLICATION OF MATERIALS

EN-AC-AISi7Mg0.3T6
in the Main Body tree view (part outline turns red)
Apply Material
okay

File > Save

10. BASIC EXERCISE \#6: 2D ROLLING BLOCK

FINAL RESULT

File menu > New > Drawing > OK > Standard: DETAIL ISO > Shape Style: A3 ISO > Orientation: Landscape > OK File menu > Save > L: catia > file name: BEARING BLOCK > OK

File menu > Open >
BLOCK BEARING.CATPart > Open
Window menu > Horizontal Tile

Creation of the different views

the surface with the 6 holes. The selected view is displayed in 2D, using the toolposition the view as in the figure (ATTENTION: $\varnothing 43$ on the left and $\varnothing 47$ on the right)
beside the view布
BROKEN CUT > create the AA cutthe frame of the broken section $A A>O$ Oject $A A$ section > Add view name
 on writing > Clear scale, just leave AA cut > OK Reposition text if needed.

Note : the scale of a view should not be entered if it is the same as that noted in the title block.

BROKEN CUT＞create the BB cut

The frame of the broken section BB＞Positioning of views＞ Position Independently of Reference View＞Move View Right of Section AA

Coupe B－B

2x on writing＞Erase scale，just leave cut BB＞OK Reposition text if needed．

『 『
PROJECTED VIEW（behind FRONT VIEW）＞create the right view
－PROJECTED VIEW＞create left view

${ }^{W} 2 x$ on the frame of the left view (thus the one on the right) $>$ the frame turns redBROKEN CUT > create the CC cut > Procedure: zoom in on one of the
holes $>$ the center $>$ zoom out and $2 x$ outside the block, taking care to pass through the center of the part (indicated by the symbol) > place the sedtion at the top left of the work plan.

๒C reference view > Move CC section in work plane.

Uthe broken section frame CC > Section Object CC > Add View Name > Clear Scale, just leave CC Section > OK Reposition text if needed.
2x on CC cup frame > frame turns redPROFILE OF THE QUICK CUT VIEW (behind CUT VIEW) > create a rectangle which passes through the axis of the block and surrounds it as shown in the figure below.
the 2 dotted lines perpendicular to the axis of the block > F2 key on the keyboard (this key is used to hide the lines selected)
EPFL CARTRIDGE > the Epfl cartridge appears, modify the name if necessary.

mod.			mod.		Desshé	16.07.2009	jennifer gasparoux		$1: 1$
					Contrele				
					Conf sux notm				
					Bon pour exica				-9
Sarss nomeneciature stopacio		\square			N^{\prime} do commande				
Nomen	N	\square	$\begin{array}{\|l\|} \hline \text { Matiere } \\ \hline \text { Masse } \\ \hline \end{array}$	EN AC-AlSi7Mg0.3 T6	Orime		A3	$\begin{gathered} \text { Notroules } \\ \hline \end{gathered}$	Foulon'
Nomenoclature stp de $\mathrm{N}^{\text {d diff }}$		\square		0.91 kg	Fenplace				
			Dénomination BLOC ROULEMENT				N dedossin		

Dimensions of the different views

Front view

2x on the front view frame $>$ the frame turns red

Using the DIMENSION $\stackrel{|\rightarrow|}{ }$ tool, dimension the front view as shown in the figure.

To align dimensions (such as 10 and 50):the rating of

on the dimension to be aligned $>$ Alignment
$>$ reference $>\mathbf{O k}$ (the 1st dimension aligns with the second)

On the left and right views, modify the center lines of the threads by following the same procedure as that followed for the DISC SHAFT part (pages 51, 52)

Right View

$2 x$ on the frame of the right view $>$ the frame turns redUsing the dimension tools (DIAMETER DIAMETER $\stackrel{* * *}{*}$ ANGLE DIVISIONS and

DIAMETER DIAMETER), dimension the view on the right.

Note: To interrupt the dimension circle Ø60: before confirming the position of the dimension, when it is
still red in color, move towhite squares and obtain the desired interruption.

Left view

$2 \mathbf{x}$ on the frame of the left view $>$ the frame turns redDIAMETER DIAMETER), dimension the view on the right.

Section A-A

$2 \mathbf{x}$ on the frame of the $A A$ cup $>$ the frame turns red
Dimension section AA using the following tools:

```
\(\stackrel{\leftrightarrow 1}{ } \downarrow\) QUOTATIONS
\(\stackrel{\sim}{\bullet}\) DIAMETER QUOTATION
\(\stackrel{*}{\vee} \cdot\) ROUGHNESS SYMBOL
因
REFERENCE
甾 GEOMETRIC TOLERANCES
\(\stackrel{\rightharpoonup}{\sim}\) ATTACHED TEXT
```


To insert the dimension of the $45^{\circ} \times 1$ chamfers, CHAMFER DIMENSIONS > Tool Palette
the chamfer in question > Place the dimension

BB Cup

$2 x$ on BB cup frame $>$ frame turns red
Using the DIAMETERTIAMETER and DIAMENER DIAMETER tools, dimension the BB cut as you learned in previous tutorials.

Coupe B-B

CC Cup

$2 \mathbf{x}$ on CC cup frame $>$ frame turns redUsing the DIMENSION tool, dimension the depth of the holes (15).

To insert the thread dimension
the tapping in question > Place the dimension (by default, the diameter and the depth appear with a different color)

To reverse the orientation of the hatch
the hatch $>$ Properties $>$ Fill $>$ Angle $>$ select $-45^{\circ}>\mathbf{O k}$

Finally :

- Move views and dimensions so that there is no overlap
- Insert general surface finish > ROUGHNESS SYMBOL

- Insert General Tolerances >
- File > Save
T, TEXT : Tolérances générales:
NF EN 22768 - m (ISO 2768 -m) Nickelage chimique

11. BASIC EXERCISE 7: SCREW RING

FINAL RESULT

Start Menu > Part Design > enter part name: SCREW RING > OK
File menu > Save > L:catia > file name: VIS RING > Save

CREATION OF THE SPAN Ø 40 mm

CREATION OF THROUGH HOLE Ø 24, BLADE Ø 26 prof. 2mm

(c) HOLE

the face of the $\varnothing 40$ staff (the hole appears in red)tab: Extension: Up to next > Diameter : 24 mmType tab: Blade > Diameter : $26 \mathrm{~mm}>$ Depth : 2 mm

Définition du trou

$\mathrm{OK}>\mathrm{OK}$

Note : if the face chosen to position a hole is circular, the hole defaults to the center. To change this location. It is then necessary to dimension the center point of the hole:

© EDGE FILLETon the inner edge (see previous drawing indication) > Radius > Enter 1 mmokay

6 TAPPED HOLES M4

the same face as for the previous hole (the hole appears in red)
Topological operators error message > OK
(When a hole is requested, the default hole parameters correspond to those entered during the last hole, this error message appears when the dimensions of the hole "overflow" the part)
on the arrows and move the hole at 2 o'clock, so that it rests on the face of the staff.

Extension tab: Up to next
> Diameter: 4mm

Type tab : Simple

tab: Thread definition > activate: Tapped > Type : Metric Coarse Pitch > Ref. thread : M4 > Teacher. thread : $5 \mathrm{~mm}>$ activate: Not straight >

Editing the sketch\# Constraints >the horizontal axis H and on the point > set the dimension $>2 x$ on the dimension value > enter $16>\mathrm{OK}$
on the vertical axis > hold down the Ctrl key and > release the Ctrl key
on point (two selected items turn red)SELECTED CONSTRAINTS IN A DIALOG BOXCoincidence > OKLEAVING THE WORKSHOPokay

CIRCULAR REPEAT

Hole. 2 (= last hole created) in the tree structure (the hole turns red)ย้, CIRCULAR REPEATtab: Axial reference >
Settings: Full Crown >
Instances : enter 6 >
Reference direction :
the face of the ring $\varnothing 40>$
enable: Keep specificationsokay

APPLICATION OF MATERIALS

(1) APPLICATION OF MATERIALSAc construction tab >
in the Main Body tree view (part outline turns red)Apply Material > OK
File > Save

12. BASIC EXERCISE \#8: CYLINDRICAL WEDGE

FINAL RESULT

Start menu > Part Design > enter the name of the part: CYLINDRICAL SHIM > OK
File menu > Save > L:catia > file name: CYLINDRICAL WEDGE > Save

SPAN Ø 30 mm

the $\mathbf{Z X}$ plane in the tree structure >the center on the origin >
any diameter (the circle turns red)CONSTRAINTS $>$ set dimension $>\mathbf{2 x}$
on the diameter value > enter $\mathbf{3 0}>\mathrm{OK}$LEAVING THE WORKSHOP

3 包 EXTRUSION > Type : Length >

HOLE Ø 30 mm

(0) HOLEa flat face of the cylinder (the hole appears in red)

Extension tab: Up to next > Diameter : $25 \mathrm{~mm}>$ $\mathrm{OK}>\mathrm{OK}$

APPLICATION OF MATERIALS

縉APPLICATION OF MATERIALSAc construction tab > 2 C 45
in the Main Body tree view (part outline turns red)
Apply Material > OK

File > Save

Note: The Cylindrical Shim can also be constructed in one step, using the Thicken option of the Extrude tool .
Do this exercise by opening a new file (Start > Part Design) which you will call CYLINDRICAL WEDGE 2.

CYLINDRICAL WEDGE 2

the $\mathbf{Z X}$ plane in the tree structure >\odot CIRCLE >the center on the origin >any diameter (circle turns red)CONSTRAINTS $>$ set dimension $>\mathbf{2 x}$on the diameter value > enter 30 > okay^1 LEAVING THE WORKSHOPEXTRUSION > Type : Length > enter $36>$ activate the Thicken tag > the
 window expands > Thin Extrusion > Thickness $1>$ enter $2.5 \mathrm{~mm}>\mathrm{OK}$

File > Save

Note: thickness 1 corresponds to inward thickening, thickness 2 corresponds to outward thickening.
13. BASIC EXERCISE 9: INT LID

FINAL RESULT

Start menu > Part Design > enter the name of the part: COUVERCLE INT > OK
File menu > Save > L: catia > file name : COUVERCLE INT > Save

SPAN Ø 40mm LENGTH 4mm

the $\mathbf{Z X}$ plane in the tree structure >

SKETCH

\odot_{\imath} CIRCLE >the center on the origin > any diameter (the circle turns red)CONSTRAINTS $>$ set dimension $>\mathbf{2 x}$on the diameter value $>$ enter $40>\mathbf{O K}$LEAVING THE WORKSHOP
EXTRUSION > Type : Length > enter $4>$ OK

SPAN Ø 29mm LENGTH 12mm

a flat face of the cylinderSKETCH$\because \odot_{\vee}$ CIRCLE >the center on the origin > any diameter (the circle turns red)

17 HT CONSTRAINTS > set the dimension > $\mathbf{2 x}$ on the diameter value > enter $29>0$ OKLEAVING THE WORKSHOP9. EXTRUSION > Type: Length > enter $12>0 K$

HOLE Ø 25mm

(0) holethe face of the Ø29 staff (the hole appears in red)

Extension tab: Up to next > Diameter : $25 \mathrm{~mm}>\mathrm{OK}>\mathrm{OK}$

APPLICATION OF MATERIALS

File > Save

14. BASIC EXERCISE 10: EXT LID

Start menu > Part Design > enter the name of the part: COUVERCLE EXT > OK
File menu > Save > L: Catia > file name: COUVERCLE EXT > Save

REACH Ø 74 mm LENGTH 4.9 mm

the $\mathbf{Z X}$ plane in the tree structure >(1) \odot CIRCLE $>$
 any diameter (the circle turns red)CONSTRAINTS $>$ set dimension $>2 x$$\uparrow$
LEAVING THE WORKSHOPEXTRUSION > Type: Length > enter $4.9>\mathrm{OK}$

REACH Ø 47 mm LENGTH 5.1 mm

a flat face of the cylinder区 SKETCHCIRCLE > the center on the origin > any diameter (the circle turns red)隹 CONSTRAINTS $>$ set the dimension $>\mathbf{2 x}$ ont the diameter value $>$ enter $47>0 \mathrm{OK}$LEAVING THE WORKSHOP3 EXTRUSION > Type: Length > enter 5.1 (reverse direction if necessary) $>\mathbf{O K}$

HOLE $\varnothing 29.5 \mathrm{~mm}$

(0) HOLE

the face of the Ø47 staff (the hole appears in red)

Extension tab : Up to next > Diameter : 29.5mm > $\mathrm{OK}>\mathrm{OK}$

4 THROUGH HOLES Ø 7mm

the face of the $\varnothing \mathbf{7 4}$ staff (the hole appears in red)
Topological error message : OK
on the arrows linked to the hole and move the hole to 2 o'clock (on the staff face)

ÿ Extension: Up to the next > Diameter : 7 mm ÿ
Type tab: Simple >
Extension tab >栲 CONSTRAINTS >on the point > put the
odds $>2 \mathrm{x}$ on the dimension value $>$ enter $\mathbf{3 0}>\mathbf{O K}$
on the vertical axis > keep the Ctrl key pressed and two selected elements turn red) > release the Ctrl key
SELECTED CONSTRAINTS IN A DIALOG BOXCoincidence > OK〔
LEAVING THE WORKSHOPokay

CIRCULAR REPEAT

Hole. 2 (= last hole created) in the tree structure (the hole turns red)CIRCULAR REPEAT

Axial reference tab : > Parameters: Entire crown > Instances : enter $4>$ Reference direction : worn $\varnothing 74>$
the face of the activate: Keep specifications > OK

APPLICATION OF MATERIALS

APPLICATION OF MATERIALSAc construction tab > 2C 45
in the Main Body tree view (part outline turns red)
Apply Material > OK

File > Save

15. BASIC EXERCISE 11: HALF-TORUS

Start menu > Part Design > enter the name of the part: HALF TORE > OK File menu > Save > L: Catia > file name: HALF TORE > Save

HALF TORUS Ø2mm

the $\mathbf{Z X}$ plane in the tree structure >the center on the origin > any diameter (the circle turns red)

UT CONSTRAINTS $>$ set dimension $>2 x$on the diameter value $>$ enter $2>\mathrm{OK}$AXIS > draw a horizontal axis line above the circle.beside the viewHiv CONSTRAINTS >
the horizontal axis H
and
the axis line > set the dimension > $2 x$ on the value of the dimension > enter $12>\mathrm{OK}$

fol revolution

First angle: $179 \mathrm{deg}>$
Second angle: 0 deg >
Profile/Surface > Sketch. 1
Axis > Sketch Axis
(Normally the axis of the sketch is selected automatically)
>OK

CHAMFER
Mode: Length $1 /$ Angle >
Length 1 : enter 0.2 >
Angle : between 45 >
Objects to chamfer: the 2 ends of the half torus (Ctrl key pressed to select 2 elements)
> okay

APPLICATION OF MATERIALS

象 APPLICATION OF MATERIALSAc construction tab >in the Main Body tree view (part outline turns red)

Apply Material > OK

File > Save
16. BASIC DRILL 12: SPRING WASHER

FINAL RESULT

Start menu > Part Design > enter the name of the part: SPRING WASHER > OK File menu > Save > L: Catia > file name: SPRING WASHER > Save
the $\mathbf{Z X}$ plane in the tree structure >SKETCH

AXIS > draw the horizontal axis line, passing through the origin.

Using the construction tools, draw the profile of the spring washer respecting the dimensions given in the image on the right

LEAVING THE WORKSHOP

Th REVOLUTION

First angle: 360 deg >
Second angle: 0 deg >
Select: Sketch Axis > OK
酉 APPLICATION OF MATERIALS
Ac construction tab >
S 355 J2 G3
in the Main Body tree view (part outline turns red)

Apply Material > OK

File > Save
17. EXAMPLE OF TEST 2

18. BASIC EXERCISE 13: 3D BEARING ASSEMBLY

FINAL RESULT

Start menu > Assembly Design > enter the name of the part: ASSEMBLAGE_PALIER > OK File menu > Save > (default location, or as indicated) > file name: ASSEMBLAGE PALIER > Save

Window > Horizontal Tile
All assembly components are visible

Assembly window

Inserting parts into the assembly:

To move each part into the assembly:
Example for the BEARING BLOCK :
BEARING BLOCK in tree view (selected item turns red)
> Holding the selection, drag the element into the assembly

Repeat the operation for all the components

Once the components have been inserted into the assembly, it is no longer necessary to keep the windows open: close the component windows, keep only the landing assembly window.

Component positions:

After insertion, the parts of the assembly are superimposed on each other.
Using the manipulation function, move the components to distinguish them from each other:

Paramètres de ma...]] $^{\text {a }}$	
x_{2} Déplacer selon liaxe x	
	> choice of a translation axis
	$>$ Move the pieces along the chosen axis $>\mathrm{OK}$
O OK Annuler	

Fixing the basic component:

It is necessary to fix the main part:

```
怎杨 Fix> select:DISK SHAFT
```

(An anchor appears on the drawing)

Inserting catalog parts:

In the list at the bottom, presenting the characteristics of the bearings, choose ($2 x$

Duplicating a part:

Assembly requires 2 bearings. To duplicate the component :

> BSA1116219200 in the tree view (selected item turns red)
> Drag the element into ASSEMBLAGE_PALIER while holding down the Ctrl key. The bearing reference should appear twice in the tree structure.
The duplicated element is often superimposed on the main element, the Manipulation tool allows you to separate the different elements.

$>$ choice of a movement axis
$>$ Move the bearing along the chosen axis > OK

Assembly of components:

Before starting, it is possible, for better visibility, to hide the planes associated with each part:
Press the Ctrl + F keys > In Name, enter: Plan* >
> View > Hide/show > Hide/show (this function hides all selected items) > OK

Assembly of the two bearings and the cylindrical shim on the shaft

The tools that will be used are:
$>$ Coincidence constraint
> Contact constraint

For example, for the first bearing:
shaft axis
Consequence: the bearing is aligned with the axis of the shaft
contact with the shaft (inner ring surface)
>
the surface of the shaft that will be in contact with the bearing.
Consequence: The bearing comes into contact with the shaft shoulder
$>$ Repeat the operation for the cylindrical shim and the second bearing

Assembly of the half-torus in the groove:

It is not possible to create contacts between toroidal surface (In our case: contact: half-torus and groove of the shaft.)
The approach consists in creating a central point at the level of the throat of the shaft, then in distancing a plane belonging to the half-torus at this same point.

Point creation:

DISK TREE (in tree)
> Disc Tree Object. 1 > Open in a new window

In the new window:

POINTon the edge of the groove
Stitch type: Center of circle > OK
A dot should appear in the center of the throat
> Save the change (File - Save)
> Close disk tree window

Edge of the throat
$>$ Duplicate the half-torus as done previously for the bearing > Move the two half-toruses so as to distinguish them > Create coincidence constraints between the half-torus axis and the axis of the shaft. If necessary, rotate one of the 2 half-tori around its axis to prevent it from merging with the other.
$>$ Following the same procedure as on page 148, show the planes of the half-tori perpendicular to their axis.
> Using the distance function

: Constrain the plane
perpendicular to the axis of the half torus to a distance of 1 (or -1) from the point created previously (depending on the side of the groove chosen)
$>$ Repeat the operation for the second half-torus

Plane perpendicular to axis

As we saw during the construction of the half-torus, each half-torus covers 179°. To prevent them from colliding, we can constrain them angularly:

$>$ Between the faces of the two half tori > Angle: $18 \mathbf{0}^{\circ}$
> $\mathrm{OK}>\mathrm{OK}$

Note: This operation is equivalent to gluing the two surfaces together.

Half-torus: Side 1

Half-torus: Face 2

Assembly of the other components:

The assembly of the other components is done in the same way as the bearings and the cylindrical shim, using the tools seen previously.

Build the next assembly
Note: The illustration below shows the relative positioning of the parts in relation to the others

For the RING VIS part, you must create a point on the axis of the part and put a distance constraint between this point and the point already created in the center of the groove.

Note : for clarity, it is possible to modify the color of the parts and make them transparent:

Transparency > Apply > OK

M4 x 25 mm screw assembly

Inserting the screws:

Catalog $>\ln$ the Selection drop-down list, go up to 3D_components $>2 x$ VIS

Search for screws using characteristics:圈 Multi-level filter >

In the filter window

$$
\text { >DF == } 4 \text { (screw diameter) }
$$ $>L==25$ (screw length)

Screw assembly:

> Constrain a screw using the constraints of coincidence and contact with respect to the hole accommodating the M6 screws (in the cogwheel)

Copy of the 4 screws in a circular pattern

> Component to duplicate :screws BSA816004025
>OK IT
> $\mathbf{2 x}$ reference screws BSA816004025 (3
${ }^{e}$ in the list) $>$ OK > close the Catalog window

> Apply > OK

M6 x 20 mm screw assembly

Refer to the figure on the right for the positioning of the $\mathrm{M} 6 \times 20 \mathrm{~mm}$ screws
Perform the same operations as those seen previously
The screws to choose are: BSA816006020 (10th in the list)

M4 x 10 mm screw assembly

Refer to the figure on the right for the positioning of the $\mathrm{M} 4 \times 10 \mathrm{~mm}$ screws
Perform the same operations as before
The screws to choose are: BSA861004010 (14th in the list)

Key Assembly

Choose from the catalog the key (width 8 mm and length 40 mm) reference: BSA1026063000
Assemble the key to the DISK SHAFT using all the tools seen previously

19. BASIC EXERCISE \#14: 2D BEARING ASSEMBLY

FINAL RESULT

Start Menu > Drafting > Standard: DETAIL ISO > Shape Style: A3 ISO > Orientation: Landscape > OK
File menu > Save > (default location, or as indicated) > file name: ASSEMBLAGE_PALIER > Save
Perform assembly drawing.
Note: In section views, shafts should not be cut:
> DISK TREE (in the tree structure of the 3D window) > Properties >
$\mathcal{T a b}^{\text {ta }}$
Drawing > Enable Uncut in section views > Apply > OK

To insert the parts list:

To edit this list:
> Edit menu > Layer Background

To return to the drawing:
> Edit menu > View layer

To number the parts:

(6) PART NUMBER (behind TEXT) (ofcourse the part number must match the number in the parts list)

20. ADDITIONAL EXERCISES

Machine Translated by Google

21. ADDITIONAL EXERCISE 1: COMPRESSION SPRING

Technical_characteristics:- \varnothing of
wire: $0.5 \mathrm{~mm} \cdot \varnothing$ of winding: 14 $\mathrm{mm} \cdot$ length L under load:
$15.3 \mathrm{~mm} \cdot$ number of active spins $\mathrm{Na}=4 \cdot$ pitch $\mathrm{p}=3.75 \mathrm{~mm}$

FINAL RESULT

Start menu > Generative Shape Design > enter the name of the part: SPRING > OK File menu > Save > L: Catia > file name: SPRING > Save

HELIX:

Departure Point > Create the point

Coordinates : $\mathrm{X}=7 \mathrm{~mm}$
$\mathrm{Y}=0 \mathrm{~mm}$
$\mathrm{Z}=0 \mathrm{~mm}$
okay
$3.75 \mathrm{~mm} \gg$ Height : 15 mm
$>$okay

Note: A spring is always drawn in its mounted configuration in an assembly: compressed for a compression spring, stretched for an extension springthe $\mathbf{Z X}$ plane in the tree structure >
$\odot_{.}$CIRCLE >
any diameter (the circle turns red)

CONSTRAINTS $>$ set dimension $>2 \mathrm{x}$on the diameter value $>$ enter $0.5>\mathrm{OK}$
center of the circle > CTRL the lower end of the helix > DIALOGUE > Coincidence > OKLEAVING THE WORKSHOP

SELECTED CONSTRAINTS IN A BOX OF

RIB:

Start > Part Design

RIB
Message Warning > OK
Profile: Sketch. 1 (default)
Guide curve: Propeller. 1

Définition de la nervure	? \times
Courbe guide : Hélice.1 [/2)	
Contrôle du profil \longrightarrow	
Conserver l'angle	-
Sélection: Pas de sélection	

\square Nervure relimitée \square Epaissir le profil -Nervure fine
Epaisseur 1: 1 mm
Epaisseur2: 0 mm
\square Fibre neutre \square Extrémités relimitées

Start > Generative Shape Design

CIRCLES:

®O CIRCLE
Circle Type: Center - Radius
Center :

Coordinates: $\mathrm{X}=0 \mathrm{~mm}$
$\mathrm{Y}=0 \mathrm{~mm}$
$\mathrm{Z}=0 \mathrm{~mm}$okay

Support: XY plane
Radius: 7mm
Start: 0deg
End: -310deg

Définition du cercle			? \|x
Type de cercle : Centre - Rayon			
Centre: Point. 2	$\therefore\|\rho \odot\| \cdot$		
Support : Plan xy			
Rayon:			
\square Géométrie sur support			
\square Calcul de laxe			
Direction de laxe: Pas de sélection			
$\bigcirc \mathrm{OK}$	3 Annuler	Aperg	

okay

To do the same on the upper part of the helix, you need two points and a plane, necessary for sketching the circle.

Creation of the first point:

- POINT

Stitch type: Circle center
Circle / sphere: Upper end of the helixokay

Plan creation:

Type of plane: Parallel through a point Reference: XY plane Point: Point. 3 (= last point created)

Creation of the second point (= center of the circle):

- POINT

Point type: On plane
Plane: Plan. 1 (= last plane created)
$\mathrm{H}=0 \mathrm{~mm}$
$V=0 \mathrm{~mm}$
okay

Définition du Point		? ${ }^{\text {x }}$
Type de point: Sur plan		\checkmark
Plan:	Plan. 1	
H:	0 mm	图
V:	0 mm	图
Référence		
Projection Surface:	Défaut (Aucun)	
O OK	3 Annuler	Aperş

Creation of the circle:

Type of circle: Center - Radius Center: Point. 4 (=last point created) Support: Plan. 1 (= last plan created) Radius: 7 mm
Start: 0deg
End: 310deg
okay

RIB:

upper circular surface of the propeller >
 SKETCH}PROJECTION OF 3D ELEMENTS >
upper circular surface of the propellerLEAVING THE WORKSHOP

The sketch thus created appears in white, it resumes the outline of the upper circular surface of the propeller

RIB
Profile: Sketch. 3 (last sketch created) Guide curve: Circle. 2
okay

Do the same for the lower part of the spring:
Sketch. 1 in tree >
\because
RIB

Profile : Sketch. 1
Guide Curve: Circle. 1okay

CHOPPED OFF
the $\mathbf{Y Z}$ plan >SKETCH
\square
Rectangle > according to the sketch opposite

ت \uparrow_{\imath} LEAVING THE WORKSHOP

(T) POACHED

First limit:

Type: to the last
More >>

Second Limit

Type: to the last
Selection: Sketch. 4 (default)

Reverse sideokay

File > Save

22. COMPLEMENTARY EXERCISE 2: SPRIGHT GEAR WITH HELICAL TOOTHING

Technicalcharacteristics: - type of
tooth: spur gear with helical teeth • number of teeth $\mathrm{Z}=24 \cdot$ Pitch $\varnothing \mathrm{d}=127.32 \mathrm{~mm} \cdot$ Pitch pitch $\mathrm{p}=16.65 \cdot$ Tooth width $\mathrm{s}=8.5 \mathrm{~mm} \cdot$ Head \varnothing da= $137.7 \mathrm{~mm} \cdot \varnothing$ foot df=114mm - helix angle $\ddot{y}=11^{\circ}$

FINAL RESULT

Start Menu > Part Design > enter part name: SPROCKET > OK
File menu > Save > L: Catia > file name: SPROCKET > Save

CYLINDER

the $\mathbf{Z X}$ plane in the tree structure >
ㄷ2. SKETCH

Draw the sketch according to the figure opposite
\uparrow LEAVING THE WORKSHOPfi REVOLUTION
Axis > Selection: horizontal axis H

TOOTH

1 One of the faces of the cylinder Method :

1. draw the left half of the tooth 2. create a vertical axis coinciding with the V axis
2. mirror this axis

Note: the tooth profile proposed here is an approximation of a real profile (circle involutes)

COPY OF TOOTH SKETCH:

Note: A second sketch identical to the first appears on the second face of the cylinder.

Sketch. 3 (in tree view)


```
Assistance
```

- Remove the verticality of the axis of symmetry, give an angle of 11° with respect to the axis V.
- Beware of automatic constraints that fix points on the V axis: delete \cdot Check that the sketch is entirely
constraint: in green
§
LEAVING THE WORKSHOP

CREATING A GUIDE

okay

CREATING A MULTI-SECTION SOLID

Q SOLID MULTI-SECTIONSSketch. $2>$ Sketch. 3guide > Right. 1Note 1: Check that closing point 1 is opposite closing point 2. If not, follow the next procedure.
closing point2 >
"the point of sketch. 3 being in front of the closing point1, on on sketch.2"

Note 2: Check the arrow direction of both sketches, at the closing point. The two arrows should point to the same direction. If not > an arrow (it changes direction)

CIRCULAR REPEAT

: CIRCULAR REPEATReference element > one side of the cylinder
Multi-section solid
Parameters: full crown
Instances: 24

HOLE

Make a through hole, diameter 80 mm , centered on the pinion.

File > Save
23. COMPLEMENTARY EXERCISE N³: CONNECTING ROD

This exercise aims to present a new approach and tools. The part in question can be obtained with all the tools seen previously.

Start menu > Part design > Enter the name of the part: ROD > OK
File menu > Save > (default location, or as indicated) > file name: BIELLE > Save
In the XY plane, draw a circle of diameter 54.
\uplus さ LEAVING THE WORKSHOP
17. EXTRUSION > Type: Length > enter $9>$ OK

Select the two plane faces of the cylinder:
on a face > keep the Ctrl key pressed > (the two selected elements turn red) $>$ release the Ctrl key.(1) HULL > Interior thickness: enter 0 Outside thickness: enter 6
>OK

on the other side

Insert menu > Body (a new Body appears in the tree view)
In the XY plane, draw a circle of diameter 24, the center on the H axis, located 150 mm from the center of the first circle.

1] LEAVING THE WORKSHOP

After making a 9mm extrusion from this sketch, As before, create a shell with interior thickness $\mathbf{0}$ and exterior thickness 4.

CREATION OF THE CONNECTING ROD BODY

Insert menu > Part Body (Part Body. 3 appears in the tree view)
In the XY plane, draw the profile as it is in the figure The AF segment is coincident with the H axis.

Arc CD is tangent to segment DE.
凹 LEAVING THE WORKSHOPEXTRUSION > Type: Length > enter 7 > OK
upper face of the created part4

Sides to remove : ${ }^{\text {sides shown below }}$

>OK

REALIZATION OF EDGE FILLES

(at the very top of the list of buttons on the right) > (Part Design)

the 10 edges shown in the figure below (while holding down the Ctrl key) > Radius: $\mathbf{5}>$ OK

END OF CONNECTING ROD

symmetry plane (XY plane) $>$ OK

File menu > Save

Guidelines for managing Catia assemblies

24. File naming

Two files cannot have the same name. We advise you to follow the name of the part with your initials and a number. Example: axis_MB_009

Do not rename files.
Do not use accents and special characters in file names.
25. Backing up files Backing up
files is done with the recording manager : File / Recording management

It is strongly recommended to save all the files in your "Permanent Data" (also with parts imported from TracePart or other).

26. Structure of assemblies A

sub-assembly must be created if it can be assembled independently by an assembler on the shop floor.
For each 3D assembly, a 2D drawing must be made with a BOM and parts list.

27. Example of an assembly containing several sub-assemblies A

gearbox is made up of a primary shaft, a secondary shaft, a casing and accessories (screws, lever, oil cap, seals, etc.) .

The assembly structure will be as follows: 1 main
assembly named Boite_de_vitesses_MB_001.CatProduct containing the following sub-assemblies:
ÿ 1 sub-assembly named Main_shaft_MB_002.CatProduct containing all the main shaft parts ÿ 1 sub-assembly named
Secondary_Shaft_MB_003.CatProduct containing all the secondary shaft parts ÿ 1 sub-assembly named
Carter_MB_004.CatProduct containing the crankcase and all the accessories
A drawing will be made for each assembly and sub-assembly, namely: ÿ 1
drawing named Boite_de_vitesses_MB_001.CatDrawing ÿ 1 drawing named
Arbre_principal_MB_002.CatDrawing ÿ 1 drawing named
Arbre_secaire_MB_003.CatDrawing ÿ 1 drawing named
Carter_MB_004 .CatDrawing

28. Example of drawing of an assembly and its sub-assemblies For the links

between the documents to be coherent, the drawing of a sub-assembly must be done when this assembly is opened in an independent window.

In the following case, the drawing of Child Assembly 1 requires it to be opened in a new window.

```
4ssemblage Pere
Assemblage Enfant 1 (Assemblage Enfant 1.1)
    #-5,2]}\mathrm{ Piece 1 (Piece 1.1)
    #-4,
    桨/Assemblage Enfant 2(Assemblage Enfant 2.1)
    Applications
```

When Parent Assembly is enabled, right click on Child Assembly 1, then Child Assembly Object 1.1, and Open in New Window.

Sub-assembly drawing can be done when the top-level item in the specification tree is the sub-assembly.

In order to check that the links are correct, in the drawing, go to Edit / Links. The pointed element must be the sub-assembly and not the parent assembly.

29. Example of replacing a part by another What does not work

(except in special cases): A user A creates an assembly in which is located a part that he has named Piece1 (Piece1.CATPart).
A user B creates a part which he names Piece1 (Piece1.CATPart).
User A would like to recover Piece1 from user B... He therefore copies the file and overwrites his Piece1.CATPart file. When opening his assembly, he gets the following message !!! Indeed, the name is identical but the UID is different. (For more information, refer to paragraph 8: Managing file names)

Ouvrir		
\begin{tabular}{lll\|}		
\hline
\end{tabular} | \square | |

What works: A

user A creates an assembly containing a part that he named Piece1_userA (Piece1_userA.CATPart).
User B creates a part that he names Piece1_userB (Piece1_userB.CATPart).
User A would like to retrieve User B's Piece1... He therefore copies the Piece1_userB.CATPart file into his directory, opens his assembly and by right-clicking on Piece1_userA (see illustration)

30. Transmission of files to another user

In order not to be dependent on file paths, proceed as follows:
File /send to / directory
Select the files you want to copy and the destination folder:

Note: All the documents of the CATIA session must be saved beforehand, the easiest way being to do this operation when the session is empty (without open document).

31. File name management

A part (or product) used in an assembly has three names:

- the name of the reference
- the name of the file - the
name of its instance (use)
For consistency, it is recommended that these three names be identical.
The instance name is constructed when inserting the part into the assembly from the reference name plus a point and increment. There is no automatic mechanism that changes the name of the instances when the name of the reference changes, this operation must be performed manually (in the case of the replacement of one part by another for example).

A few rules to follow: The file
name (.CATPart, .CATProduct, .CATDrawing) must be unique.
In a CATIA session, two different parts cannot have the same reference name (automatic verification).
The instance name must be unique within a single assembly level.
Each CATIA file is also identified by a unique, non-editable UID. Inter-document links are based on both document names and UIDs. Any replacement of a part by another outside of CATIA is therefore likely to fail! (cf. Example of replacing one part with another)

