EXERCISE BOOK Student Notes: **CATIA V5 Training** Exercises **CATIA Surface** Design Version 5 Release 19 September 2008 EDU_CAT_EN_GS1_FX_V5R19

Copyright DASSAULT SYSTEMES

Table of Contents (1/2)

R	Creating Wireframe Geometry: Recap Exercises	4
	Creating Wireframe Geometry: Button	5
	Creating Wireframe Geometry: Mouse	11
6	Creating Basic Surfaces: Recap Exercises	19
	Creating Basic Surface: Button	20
	Creating Basic Surface: Mouse	23
¢	Operations on Geometry: Recap Exercises	29
	Operation on Geometry: Mouse	30
	Operation on Geometry: Torch	37
¢	Completing the Geometry in Part Design: Recap Exercises	48
	Completing the Geometry in Part Design: Button	49
	Completing the Geometry in Part Design: Mouse	56
¢	Modifying the Geometry : Recap Exercises	66
	Modifying the Geometry: Button	67
	Modifying the Geometry: Mouse	72
¢	Using Tools: Recap Exercise	77
	Surface Check Exercise Process	78
	Do it Yourself	79

Copyright DASSAULT SYSTEMES

Table of Contents (2/2)				
🔹 Ma	ster Exercise: Mobile Phone	85		
۲	Mobile Phone: Presentation	86		
۲	Mobile Phone (1): Creating Wireframe Geometry	89		
۲	Mobile Phone (2): Creating Basic Surfaces	94		
۵	Mobile Phone (3): Trimming and Joining the Body Surfaces	98		
۲	Mobile Phone (4): Creating the Part Body	102		
۲	Mobile Phone (5): Modifying the Geometry	106		

Table of Contents (2/2)

EXERCISE BOOK

Student Notes:

Creating Wireframe Geometry

Recap Exercises

- Button
- Mouse


```
Student Notes:
Do It Yourself (1/4)
Create a new part to begin the exercise and you can save it as
  WFS Modifying the Geometry Button Start.CATPart
Create five Wireframe Points with following co-ordinates
                                  Wireframe
   Point.1 (0,0,5)
   Point.2 (0,10,9)
                                                            0.2
                                         (___ 🍝 🖓 🔗_
   Point.3 (0,23,7)
   Point.4 (0,30,8)
   Point.5 (-20,30,7)
                                    Point.3 Point.4
                       Point.2
                                                               Point.5
                                                       ₩-
Point.1
                                              ж
                                                                            Geometrical Set.I
                                                                              Point.1
                                                                              Point.2
                                                                              Point.3
                                                                              Point.4
                  You can Double Click on Points icon to keep it
                                                                              Point.5
                  active
```

Copyright DASSAULT SYSTEMES

EXERCISE BOOK

EXERCISE BOOK

Student Notes:

Creating Wireframe Geometry

Recap Exercise: Mouse

In this recap exercise you will create:

- Points in 3D
- Wireframe Circle
- 3D Spline
- Intersections and Projections

Do It Yourself (2/6)

You need to create 3D Spline passing through Five points

For this you need to Create Five Points first Point.3 (6.35,0,12.7) Point.4 (-38.1,0,25.4) Point.5 (-69.85,0,31.75) Point.6 (-121.92,0,12.7) Point.7 (-139.7,0,0) Now you can create a Spline passing through these five points Spline Definition ? × Point3 Points Tangents Dir. Tensions Curvature Dir. Curvature Point.3 Point.4 Point.5 Point.6 Point.7 Add Point After O Add Point Before O Replace Point Geometry on support No selection Close Spline Remove Point Remove Tat. Reverse Tat. Remove Cur. Show parameters >> ок ок 🐸 Cancel 📗 Preview

EXERCISE BOOK

Student Notes:

Point4

oint5

Copyright DASSAULT SYSTEMES

```
Do It Yourself (5/6)
Create a Wireframe Circle using "Three Points" (Project.1, Intersect.1, Project.2)
    Circle Definition
                                              ? ×
     Circle type : Three points
                            - 🔴
                                   Circle Limitations
     Point 1: Project.1
                                      \odot
     Point 2: Intersect.1
                                  Start:
     Point 3: Project.2
      - Optional
                                              4
                                  End: 180deg
      Geometry on support
      Support: No selection
      Axis Computation
     Axis Direction: No selection
                    S OK
                              Sancel
                                         Preview
                                                                             Circle
```


Student Notes:

Creating Basic Surfaces

Recap Exercises

You will now do the following exercises

- Button
- Mouse

Creating Basic Surfaces

Recap Exercise: Button

In this recap exercise you will create :

- Use Wireframe geometry completed in previous exercise to create Surface geometry that will be used to shape the solid part.
- Extrude with Plane as direction
- Extrude with Line as direction

EXERCISE BOOK

Copyright DASSAULT SYSTEMES

```
Student Notes:
Do It Yourself
       WFS_Creating_Surfaces_Button_Start.CATPart
      WFS_Creating_Surfaces_Button_End.CATPart
  Create a Extrude from Sketch.1. Enter Limit.1= 20 mm and Limit.2 = 10 mm
¢.
  Use XY plane as Direction
1
Create another extrude using Spline.1 along Line.1. Enter Limit.1=30 mm
   and Limit.2 = 10 mm
                                         Extruded Surface Definition
                                                                     ? ×
                                                 Sketch.1
                                          Profile:
                                          Direction: xy plane
                                           -Extrusion Limits
                                           Limit 1
                                                  Dimension
                                                                      Ŧ
                                           Type:
                                                                     e
                                          Dimension: 20mm
                                           Limit 2
                                                  Dimension
                                                                      Ŧ
                                           Type:
                                                                                                          Extrude.1
                                          Dimension: 10mm
                                                                      ÷
     Sketch.1
                Line.1
                                                                     ? ×
                                         Extruded Surface Definition
                                          Profile:
                                                 Spline.1
                                          Direction: Line.1
                                           -Extrusion Limits
                                           Limit 1
                                                  Dimension
                                           Type:
                                                                      •
                                          Dimension: 30mm
                                                                     ÷
                                           Limit 2
                                           Type:
                                                  Dimension
                                                                      •
                                                                                   Extrude.2
                                          Dimension: 10mm
                                                                     ÷
                       Spline.1
```

Copyright DASSAULT SYSTEMES

EXERCISE BOOK

Creating Basic Surfaces

Recap Exercise: Mouse

In this recap exercise you will create :

- A swept surface for the top shape of the mouse
- Two extruded surfaces to shape the side and front of the part
- A blend surface to connect existing surfaces while maintaining tangency

EXERCISE BOOK

EXERCISE BOOK


```
Student Notes:
Do It Yourself (2/4)
Extrude Spline.2 by 25.4mm to design the side surface. Direction of extrusion=XY
   plane.
Also, Extrude the Circle.1 by 25.4 mm to design the front surface. Direction of
   extrusion=XY plane.
Extruded Surface Definition
                             ? ×
        Spline.2
 Profile:
 Direction: xy plane
  -Extrusion Limits
 Limit 1
         Dimension
 Type:
                                                                 Spline.2
 Dimension: 25.4mm
                              ÷
                                                                                                     Extrude.1
                               ? X
Extruded Surface Definition
 Profile:
        Circle.1
 Direction: xy plane
  -Extrusion Limits
 Limit 1
 Type:
          Dimension
 Dimension: 25.4mm
                                -
                                                                                                       Extrude.2
```

Copyright DASSAULT SYSTEMES

EXERCISE BOOK

Student Notes:

Do It Yourself (3/4)

Design a smooth blend surface between the extruded surfaces

- First Curve : "Edge" of Extrude.1
- Second Curve : "Edge" of Extrude.2
- Set First and Second Continuity to Tangency
- Set First and Second Tension Values to 0.9 and 0.7 respectively.

Student Notes:

Operations on Geometry

Recap Exercises

- Mouse (operations)
- Torch

Operations on Geometry

Recap Exercise: Mouse

In this recap exercise you will:

- Create more refined Surface geometry for the shape of the mouse
- Organize the surface geometry in the tree using a new Geometrical Set
- Extrapolate a surface to cover the entire Side surface for the Mouse
- Apply a Surface Fillet
- Create a Join
- Finally, Trim the surfaces to Create a Surface of a Mouse

EXERCISE BOOK


```
Do It Yourself (1/5)
        WFS Performing Operations on Geometry Mouse Start.CATPart
Insert a new Geometrical Set.
Rename it to "Operations".
Extrapolate the edge of sweep.1by length of 12.7 mm as shown
                                                                                    Properties
                                                                                     Current selection : Operations/Part1
           Insert Tools
                           Window
                                     Help
                                                                                      Mechanical Feature Properties Graphic
               Object
                                                                                      Feature Name : Operations
               Body
                                                                                      Creation User :
               <u>G</u>eometrical Set
                                                                                      Creation Date: 02/09/2005 23:48
                                                                                      Last Modification: 02/09/2005 23:48
             🚶 Ordered Geometrical Set
                                                                                ? ×
                                                   Extrapolate Definition
                                                              Sweep.1\Edge.3
                                                    Boundary:
                                                    Extrapolated: Sweep.1
                                                     -Limit
                         Extrapolated
                                                    Type: Length
                                                                                 -
                                                    Length: 12.7mm
                                                     Constant distance optimization
                                                    Up to: No selection
                                                                  Tangent
                                                    Continuity:
                                                    Extremities:
                                                                  Tangent
                                                                                  -
                                                    Propagation mode: None
                                                    Assemble result
                                                                                                    Extrapolated surface
                                                    Extend extrapolated edges
```

Student Notes:

Copyright DASSAULT SYSTEMES

EXERCISE BOOK

Do It Yourself (4/5)	<u>Student Notes:</u>
 Trim the Join and Extrapolated Surface To Swap the Trimmed Portion of the Surfaces click on "Other Side" Option. The Sides to be trimmed become transparent Joined Joined Jurface Surface Surfaces Surface Surface<	≥t.1

Copyright DASSAULT SYSTEMES

EXERCISE BOOK

Performing Operations on Geometry

Recap Exercise: Torch

In this recap exercise you will:

- Create a Join surface
- Split and Trim Surfaces
- Heal a surface

EXERCISE BOOK

		EXERCISE B
Do It Yourself (2/8)		<u>Student Notes:</u>
	Trim Definition	
	Mode: Standard	
Trim the surfaces	Revolute.1 Sweep.1	
Create trim between Revolute.1 and		
Sweep.1	Add after Add before	
	Remove Replace Other side / next element	
	Other side / previous element	
	Support: Default (None)	
	Elements to remove: Default (None)	
L	Automatic extrapolation	
Create Symmetry		
 Create Symmetry of Trim 1 Take 		
reference plane as xy plane.		
Symmetry Definition		
Element Trim 1		
Reference: jxy plane		
OK Cancel P	review	

Student Notes:

Do It Yourself (3/8) Extruded Surface Definition ? × Button Hole Sketch Profile: Create Button Hole notch Direction: yz plane Create an extrude Surface - Extrusion Limits Limit 1 Profile: Button Hole Sketch Dimension Type: • Dimension: 64mm **Direction : yz plane** Limit 2 ۲ Type: Dimension Dimension: 60mm -Reverse Direction OK Scancel Preview **Trim Definition** ? × Mode: Standard ×. - Trimmed elements Trim.1 Create trim Extrude.1 First Element: Trim.1 Add before Add after Second element: Extrude.1 Remove Replace Other side / next element Other side / previous element Support: Default (None) Elements to remove: Default (None) Ö 3 Elements to keep: Default (None) Result simplification Intersection computation Automatic extrapolation OK OK Cancel Preview

Do It Yourself (7/8) Healing Definition ? × Elements To Heal: Heal surface Trim.7 Heal Trim.5 Merging distance = 0.3mm Add Mode Remove Mode Parameters (The trim surface has gaps. Because of these Merging distance: 0.3mm ÷ gaps we cannot thicken the surface and thus Distance objective: 0.001mm **e** we need to heal the surface) OK 🥥 Cancel Preview 0

EXERCISE BOOK

Do It Yourself (8/8)

Load the part "Torch_EndPart.CATPart"

Thick surface

- Thick Healing.1 by going to part design
 - First offset = 5 mm
 - Second offset = 0 mm

Copyright DASSAULT SYSTEMES

? ×

ThickSurface Definition

EXERCISE BOOK

Student Notes:

Completing the Solid in Part Design

Recap Exercises

You will now do the following exercises

- Button
- Mouse

Completing the Solid in Part Design

Recap Exercise: Button

In this recap exercise you will:

- Create a Solid Button using Surface Geometry to define the shape
- Create two sketch profiles for designing solid parts
- Split the solid
- Apply Fillets
- Create Shell

EXERCISE BOOK

Do It Yourself (1/5)

WFS_Completing_Geometry_in_Part_Design_Button_Start.CATPart

- Access the Part Design Workbench.
- Sketch on XY plane. This is Sketch.3
- Exit the Sketcher
- Create another Sketch on YZ plane. This is Sketch.4

EXERCISE BOOK

Student Notes:

Recap Exercise: Mouse

In this recap exercise you will:

- Create a solid using Close Surface functionality
- Create Pads and Pockets
- Use the thickness command to provide thickness to surface and shell command to hollow a solid.

EXERCISE BOOK

Student Notes:

Do It Yourself (4/8) Create a Pocket from the sketch "Upto Surface" and select "Extrapol.2" **Pocket Definition** ? X G Second Limit -First Limit Dimension • Up to surface -Type: Type: Omm Extrapol.2 Depth: Limit: -Omm No selection Offset: Limit: Profile/Surface Direction 🧧 Normal to profile I. Selection: Sketch.1 Reference: No selection Thick Reverse Side -Thin Pocket Thickness1 2mm Mirrored extent Thickness2: 0mm \$ Reverse Direction CloseSurface.1 **7** Plane.1 Sketch.1 Offset.1 Copyright DASSAULT SYSTEMES Extrapol.2 Pocket.1

Copyright DASSAULT SYSTEMES

EXERCISE BOOK

Student Notes:

Do It Yourself (6/8) Insert a new Body. Copy Sketch.1 using the contextual menu and paste it in the new body. R) • Edit the copied Sketch in the new Body. Operations <u>Body 1</u> Sketch.2 2 27 Copyright DASSAULT SYSTEMES 0 0

EXERCISE BOOK

Student Notes:

Do It Yourself (8/8)

- Hide the Main Part Body, So that you can see only the Mouse Buttons
- Shell the New Buttons by 2mm.Select 10 faces to remove

	Shell Definition Default inside thickness: Default outside thickness: Omm Faces to remove: 10 elements Other thickness faces: No selection		
WFS_completing_Geometry_In_Part_Design_Mouse_End.CATPart			

Modifying the Geometry

Recap Exercises

Button and Mouse Exercises Topics covered:

- Modify spline control points
- Modify a surface profile sketch
- Modify a surface fillet radius

EXERCISE BOOK

Modifying the Geometry

Recap Exercise: Button

In this step you will:

- Modify the Surface Shape of the Button
- Modify the Co-ordinates of the Spline
- Modify the radius of sketch used to design the side surface

6

```
Student Notes:
Do It Yourself (1/3)
    WFS Modifying the Geometry Button Start.CATPart
You will modify the Geometry of the Spline.1 by editing the co-ordinates of one of
  its Control Points.
Show the Spline.1. Show all the wireframe points used to create the Spline.1.
  Double click on Point.3 in the tree or in the geometry area.
  Modify the Z co-ordinate from 7 mm to 5 mm.
                                                                          Point Definition
                                                                                                  ? ×
  Observe the change in the Solid.
                                                        Modify the
                                                                           Point type: Ccordinates
                                                                                                 🖃 🏀
                                                        value to 5 mm
        Point.1
                                                                                                   X = 0mm
                                                                                                   v = 23mm
        Point.2
                                                                           z – Smm
                                                                                                   Point.3
                                                                           Reference
                                                                           Point
                                                                                   Default (Origin)
        Point.4
                                                                           Axis System: Default (Absolute)
        Point.5
                                                                           Compass Location
    \sim Spline.1
                                                                                    🥥 Carcel
                                                                               OK
                                                                                               Prevew
                                                                         You can see that the Shape
```

of the Button is Modified.

EXERCISE BOOK

Student Notes:

Do It Yourself (2/3) **•** You will modify the Geometry of the Sketch used to create Side surface of the Button i.e Sketch.1 • Hide the spline.1 and all its points. Show the Sketch.1. Double click on the Sketch.1 to edit it. • Spline.1 ine.1 Sketch R 25' Copyright DASSAULT SYSTEMES R 20 Modify this /0 н **Radius value to** 25 mm.

Student Notes:

Modifying the Geometry

Recap Exercise: Mouse

In this step you will:

- Modify the Wireframe geometry in order to change the surface shape and create more ergonomic solid
- Modify the Co-ordinates of the Top Spline control points
- Modify the fillet radius
- Modify several control points on the side spline

EXERCISE BOOK

Student Notes: Do It Yourself (1/3) WFS_Modifying_the_Geometry_Mouse_Start.CATPart You will modify the Geometry of the Spline.1 by editing the co-ordinates of one of its Control Points. Show the Spline.1. Show all the wireframe points used to create the Spline.1. Double click on Point.4 in the tree or in the geometry area. Modify the X co-ordinate from -38.1 mm to -35 mm. Modify the Z co-ordinate from 25.4 to 30 mm Observe the change in the Solid. ? × Point Definition Point type: Coordinates 🖸 🏀 Point.3 X = -35mm γ = 0mm **Ş** Point.4 z = 30mm ٢ Point.5 Reference Point.6 Print: Default (Origini) Axis System: Default (Atsolute) Point.7 Compass Location 🗸 Spline.1 🥥 Cancel OK Preview You can see that the Shape of the Mouse is Modified.

Do It Yourself (2/3)

Change the surface fillet radius parameter to 15mm.

- Expand the Operations body in the tree.
- Double-click the fillet branch (Fillet.1) to modify its definition.
- Change the radius value to 15mm.

EXERCISE BOOK

Student Notes:

Do It Yourself (3/3)

Modify several points in the spline for the side surface.

- Change to the Top View orientation.
- Modify the following three points to new coordinate values:
 - Point10 (-58mm, 36mm, 0)
 - Point11 (-100mm, 47mm, 0)
 - Point12 (-120mm, 33mm, 0)

• Notice how the contour of the solid part changes after each modification.

EXERCISE BOOK

EXERCISE BOOK

Student Notes:

Using Tools

Recap Exercise: Surface Check Exercise

In this exercise you will:

- Analyze a set of surfaces for deviation gaps, non tangency, and curvature value.
- Perform a quick analysis for summary of results
- Perform a detailed analysis and also change the color scale
- Display the results with 'Comb' and 'Information' displays.

EXERCISE BOOK

EXERCISE BOOK

Student Notes:

Do It Yourself (2/6)

This window gives a summary of all four types of connection analysis. The number of surfaces selected and number of connections are shown. The maximum deviation for distance, tangency, curvature, and curvature tangency, are also displayed.

Distance Analysis

Tangency Analysis

Curvature Analysis

Curvature Tangency Analysis

> Analysis will performed in the range of values mentioned in Minimum Gap and Maximum Gap.

Connect C	hecker				?	
Element	s		<u></u>		<u></u>	
Source:	E elements			8		
Target:	No selectio	JI.		ø		
-Туре -						1
<u>क</u>	Θ	$\boldsymbol{\varkappa}$	3 surface	(s) U Cu	Jrve(s)	
🥥 Bound	lary OPro	jection	3 Connec	tion(s)		
Quick	Full					
<u> </u>	0.4		G2 📘 🗖	-		
	> U.1mm			•		
	> 0.5deg			5deg		
Connec	tion					
Minim	ium Gap	Max	inum Gap		1.21	
0.01	ım 🚔	0,0	5nm 🛓			
— Informa	ition ——		Discreti	zation —		
	<u>૧</u> 61ૂ	, Ann	n ju ji	11 (I	10	
-Max De	viation —					
GU:0 019 G1:11.78	mm 7ceg		G2:99.63 G3:178.34	14deg		
				-	-	

EXERCISE BOOK Student Notes: Do It Yourself (3/6) Now check Tangency at connections. Select the 'Tangency' option. Notice the area in yellow having an angle > 5deg is Increase the tangency angle value to 5 deg. shown. The maximum Value of angle in this zone is 11.787deg. Quick Full \otimes GQ 0.01mm ÷ G3 **e** > 5deg > 5deg. Connection Minimum Gap Maximum Gap 0.01mm 🚔 0.05mm Click the Overlapping button to check for overlap of surfaces at their boundaries. This means that the surfaces do not overlap (No overlap is found between surfaces.) and intersect each other Quick Full 8 GO > 0.01mm > 5 ÷ G1 > 5deg G3 -<mark>⇒</mark> 5deg -Connection Minimum Gap Maximum Gap 0.05mm 0.01mm

Student Notes:

Do It Yourself (4/6)

- **•** Perform a Full analysis and modify the color scale display.
 - Select the Full button
 - The full Connect Checker window is displayed. You can display the color scale window by clicking the color scale icon.

The values set during our Quick analysis are maintained.

Connect Checker	Connect Checker	<u>? ×</u>	
Connect Checker ? × Elements Source: 8 elements Taroet: No selection 8 surface(s) 0 Curve(s) Vpe Image: Source (s) 0 Curve(s) 3 connection(s) Outer Full Image: Source (s) 0 Curve(s) 3 connection(s) Quict Full Image: Source (s) 0 Curve(s) 3 connection(s) Quict Full Image: Source (s) 0 Curve(s) 3 connection(s) Quict Full Image: Source (s) 0 Curve(s) 3 connection(s) Image: Source (s) 0 Curve(s) Source (s) 0 Curve(s) 3 connection(s) Image: Source (s) 0 Curve(s) Source (s) 0 Curve(s) 3 connection(s) Image: Source (s) 0 Curve(s) Source (s) 0 Curve(s) 3 connection(s) Image: Source (s) 0 Curve(s) Source (s) 0 Curve(s) 3 connection(s) Image: Source (s) 0 Curve(s) Source (s) 0 Curve(s) 3 connection(s) Image: Source (s) 0 Curve(s) Source (s) 0 Curve(s) 3 connection(s)	Connect Checker Elements Source: 8 elements Target: No seection Type Boundary O Projection Quick Full S0 G1 G2 G5 O Amplitude Display Display Connection	(5) (5)	Check 2dec 1.75deg 1.5deg 1.25deg 0.75deg 0.75deg 0.5deg 0.25deg 0.25deg
Connection Minimum Gap 0.01mm 0.05mm Information In	Minimum Gap 0.01mm 0.05mm Information Max Deviation G0:0.019mm G0:0.019mm G0:0.019mm G0:0.11787deg G1:11.787deg OK	Min Vaue Oc Max Valu 11 Auto	leg e ,787deg Min Max

Student Notes:

Do It Yourself (5/6)

- Tangency deviations are displayed with different colors using the scale values in the color scale window. Currently 2 deg is maximum value.
- All connection areas with tangency deviation greater than 2 degrees are shown in purple.

- You will see the analysis results in various display mode by using different options like 'Comb' and 'Information'.
 - Click the Comb box in the Connect Checker window
 - Also, click the Automatic dial to activate automatic scaling of results

Student Notes:

Master Exercise: Mobile Phone

In this exercise you will create 'Mobile Phone' model using the tools of Wireframe and Surface Design workbench.

- Mobile Phone: Presentation
- **Mobile Phone (1): Creating Wireframe Geometry**
- Mobile Phone (2): Creating Basic Surfaces
- Mobile Phone (3): Trimming and Joining the Body Surfaces
- Mobile Phone (4): Creating the Part Body
- Mobile Phone (5): Modifying the Geometry

Student Notes:

Mobile Phone

Master Exercise Presentation

- In this exercise you will build Mobile Phone body using Wireframe, Generative Shape Design, and Part Design Workbenches.
- Here you will first create all the necessary wireframe elements.
- After that you will create surfaces from these wireframe elements
- Then you will perform operations on these Surfaces to get a single homogenous surface.
- Using this surface you will create a part from it.
- You will finally optimize your design by modifying some of its specifications.

EXERCISE BOOK

Student Notes:

Mobile Phone

Step 1: Create the Wireframe Geometry

In this step you will create the basic wireframe elements.

- Create Points
- Create Splines
- Create Projections
- Create 3D Circles


```
Do It Yourself (1/4)
            Load the part "Mobile_Phone_Step_1_Start.CATPart"
        You have been provided two Guide curves to help you to build the exercise
     8
        Insert a Geometrical Set "Wireframe"
        Create five wireframe points in it with following specifications:
           Point.1 (0,0,9)
                                                                                ? X
           Point.2 (40,0,7.5)
                                                         Point Definition
           Point.3 (60,0,6)
                                                          Point type: Coordinates
                                                                              •
                                                          X = 0mm
                                                                                 -
           Point.4 (80,0,5.8)
                                                          Y = 0mm
                                                                                 ÷
           Point.5 (90,0,5.8)
                                                          Z = 9mm
                                                                                 🟚 Part2
                                                          Reference
               Guide Curve 1
                                    Guide Curve 2
                                                                                           -📿 xy plane
                                                          Point:
                                                                  Default (Origin)
                                                          Axis System: Default (Absolute)
                                                                                           - 🖉 yz plane
                                                           Compass Location
                                                                                           🖅 zx plane
                                                                                            🤁 PartBody
                                                             OK
                                                                   Cancel Preview
                                                                                            🔀 Elements to Solve the Exercise
                                                                                              💫 Guide Curve 1
   Point.1
                                                                                              💫 Guide Curve 2
                                                                                             👯 <u>Wireframe</u>
                                                                                                 Point.1
Copyright DASSAULT SYSTEMES
                                                                                                 Point.2
                                                                                                 Point.3
                                                                                                 Point.4
                              Point.2
                                         Point.3 Point.4 Point.5
                                                                                                 Point.5
```

EXERCISE BOOK

EXERCISE BOOK

EXERCISE BOOK

Student Notes:

Mobile Phone

Step 2: Create the Basic Surfaces

In this step you will create the basic Surfaces from the wireframe elements created previously to build the part.

- Create Sweep Surfaces
- Create Blend Surfaces
- Create Extrude Surfaces

EXERCISE BOOK


```
EXERCISE BOOK
```


EXERCISE BOOK

EXERCISE BOOK

Student Notes:

Mobile Phone

Step 3: Trimming and Joining the Body Surfaces

In this step, you will perform operations on the surfaces that you have created to get a single uniform surface.

- Create Joins
- Trim Surfaces
- Cerate symmetrical surfaces

EXERCISE BOOK

Student Notes:

Do It Yourself (1/3) Load the part "Mobile_Phone_Step_3_Start.CATPart" Insert Geometrical set "Operations" In this set create a Join between "Side", "Top" and "Bottom" surfaces 6 Trim this Join and Extrude.2 (Extrusion from circle.1) 6 Join Definition ? × -Elements To Join Side Top Botton Add Mode Remove Mode Join Parameters Sub-Elements To Remove Check tangency 📁 Check connexity 🔲 Check manifold Simplify the result Ignore erroneous elements 0.001mm Merging distance E Angular Threshold OK OK Cancel Preview ? X **Trim Definition** Mode: Standard - Trimmed elements Join.1 Copyright DASSAULT SYSTEMES Trim Extrude.2 Add before Add after Replace Other side / next element Other side / previous element

Do It Yourself (2/3)

- You will Trim the previously trimmed surface with Extrude created from second circle.
- Create symmetrical surfaces from Trim result using ZX plane.

EXERCISE BOOK

Student Notes:

Mobile Phone

Step 4: Creating the Part Body

In this step, you will create the Part from the surfaces you have created, by accessing the Part Design Workbench

- Create a Closed part from a surface
- Apply Fillets

EXERCISE BOOK

EXERCISE BOOK