

About this course

Objectives of the course

Upon Completion of this course you will be able to:

-Create Scans from point cloud data

- -Create curves from scans
- -Create surfaces from scans
- -Create model and fillet model
- -Create Deviation analysis and Annotations

Targeted audience

Surface Designers

Prerequisites

Students attending this course should have experience in the following domain(s): CATIA V5 fundamentals, Digitized Shape Editor and Surface Design

Instructor Notes:

Copyright DASSAULT SYSTEMES

Þ.	Quick Surface Reconstruction: Introduction	6
	Accessing the Workbench	7
	User Interface	8
¢	Master Exercise Presentation:Plastic Bottle	10
¢	Creating Scans	11
	Using Curvature Analysis	12
	Using Isoslope Computation	16
\$	Master Exercise Step 1: Creating Scans	18
ę.	Creating Curves	19
	Creating Curve From Scans	20
	Creating Sketches From Scans	23
	Creating a 3D Curve	25
	Trimming Non Intersecting Curves	28
	Adjust Nodes	29
	Cleaning Contour	31
	 Trimming a Clean Contour 	33
	Curve on Mesh	34
¢	Master Exercise Step 2: Creating Curves	37

Table of Contents (2/3)

Creating Surfaces	38			
 Creating Canonical Surfaces 	39			
Creating Free Form Surfaces	41			
Master Exercise Step 3: Creating Surfaces	46			
Master Exercise Step 4: Creating the Rough Model				
Master Exercise Step 5: Filleting the Model				
Checking Deviation	49			
Performing a Deviation Analysis	50			
Creating Annotations	55			
Creating Deviation Reports	56			
Creating a Curvature Mapping	57			
Automatic Processes	58			
Creating a Network	59			
Creating Surface On a Network	64			
Creating Automatic Surfaces	67			
Additional Exercises	71			
Exercise: Car Body	72			
Exercise: Toy Plastic Part	73			

Instructor Notes:

Copyright DASSAULT SYSTEMES

	INSTRUCTOR GUIDE
Table of Contents (3/3)	
Exercise:Washing Powder Bottle	74
SKS LINVSSYG	
Copyrigh	

Quick Surface Reconstruction: Introduction

In this lesson, you will become familiar with the user interface and the general process of Quick Surface Reconstruction.

INSTRUCTOR GUIDE Using Curvature Analysis (2/4) D. Filter: Define a filtering value to suppress unwanted small loops Segmentation by C... <mark>?</mark> × (from 0 to 500). -Influent Radius 0.03mm -Filtering value set to 0 Parameters 3.31998e-005 -VED 04461348000000000 Min 0 Max 102.05 Filter 0 D Туре Curvature ٠ Absolute • -Display 1 25 Filtering value set to 500 Results 🗃 Scans 🔘 Distinct Grouped Cloud Copyright DASSAULT SYSTEMES 🌖 OK 📔 🥌 Cancel

Sketch from Scan
Element: Planar Sections.1
Threshold 0.5mm
Tolerance 1mm
Display
Primitive Constraint Less <<
/ elements: I line, 5 circles, 0 ellipse Max deviation = 5,544mm Mean deviation = 0,93mm
For 83.2579 % points, deviation < 1mm
OK OK Cancel
points using Primitive display
Sketch from Scan
Element: Planar Sections.1
Threshold 0.5mm
Tolerance Imm
Primitive Constraint Less <<
Primitive O Constraint Less <<
Vispiay Primitive ○ Constraint Less << Section 2.1 Constraint Less << Section 2.1 Constraint Less << Section 2.1 Constraint Max deviation = 1.062mm Mean deviation = 1.252mm

	С	Curve On Mesh (1/3)				
	Th	is function is used to create a curve on the support mesh.		Curve Creation		
	Α.	Sup	port Mesh: Select the Cloud Mesh.	1 A B & A B		
	В.	Para well num	meters: You can specify the Smoothing Tolerance, a as the maximum order (Max. Order) and maximum ber of segments (Max. Segments) of the curve.	as Curve On Mesh		
	C.	Disp visu	lay: By selecting the following button you can alize,	Support Mesh CloudTessellation.		
			The curvature analysis of the resulting curve.	Tolerance 0.25mm Max. Order 2		
		*	The Maximum deviation of the resulting curve	C Display		
		~	The order and the number of segments of the resulting curve.	Curve Optimization		
Copyright DASSAULT SYSTEMES						

Plastic Bottle

Step 2: Creating Curves

In this step, you will create curves on the digitized data by smoothing the scans created in step 1 and modifying the resulting curves with Wireframe and Surfaces.

Instructor Notes:

Copyright DASSAULT SYSTEMES

Creating Free Form Surfaces (3/5)

- A. Tolerance: Define maximum deviation expected between the final surface and the points of the selected cloud.
- B. Cloud: Define the cloud of points (if any). Define an initialization surface if required. The created surface will respect the parameterization of the init surface.
- C. Init Surface: Define the boundary curves (if any).
- D. Segments and Order: Define the maximum number of spans in the resulting surface and the order of each span.
- E. Advanced: Check this option to access the advanced NURBS computation parameters.
- F. Define the use of the boundary curves:
 - a. Constraint: the boundary curves define the surface boundaries (within tolerance)
 - b. Trim: the surface is computed only by fitting the points. Boundary curves are then projected to the surface and the surface is trimmed by the projection. The distance between the curves and the surface can thus be greater than the tolerance.
 - c. Selection: the curves are used only to select the points of the cloud that will actually be used for fitting.

Instructor Notes:

DASSAULT SYSTEME

owerFit		?×
Tolerance		Constraint
Cloud	(B)	
🗌 Init Surface		
Parameters		
Order 6 E	Segments	64 D A
Advanced		Swap U/V
Order U 6	Segments U	8
Order V 6	Segments V	8
	Gap G1	0.5
Tension 1	Dediuc	10
12		10

INSTRUCTOR GUIDE

INSTRUCTOR GUIDE

INSTR	UCTOR	GUIDE

Α.	Mean Surface Deviation: Expected tolerance on mesh points given as mean distance between surface and mesh (not max. distance).	Automatic Surface ? X Mesh Cloud Tessellation.1
В.	Free Edge Tolerance: Expected number of points within tolerance = the subdivision process stops when the value in % is reached.	Surface parameters Mean surface deviation Surface detail Surface d
		File edge (defance 0.5mm Target ratio 90 Full internal tangency
	Display options to validate result: you can display deviation as spikes • Mesh deviation • Free edge deviation	Spikes Deviation 0.5mm Spikes Deviation 0.5mm 197 output faces Image: Constant of the second s

INSTRUCTOR GUIDE

Instructor Notes:

INSTRUCTOR GUIDE

Instructor Notes:

INSTRUCTOR GUIDE

	To Sum Up
	In this course you have seen:
	How to construct a surface using Point Cloud data
	How to create Scans using Curvature Analysis and Isoslope Computation
	How to create Sketches, Curves from a Scan
	How to create Canonical Surfaces and Free Form Surfaces
	How to create Curves on network and Surfaces on network
	♥ How to create Automatic Surfaces.
ES	
JLT SYSTEM	
jht DASSAL	
Copyrig	

Instructor Notes: