

About this course

Objectives of the course

Upon completion of this course you will be able to define Multi-Pockets Operations:

- Power Machining
- Multi-Pockets Flank Contouring

Targeted audience

NC programmer knowing how to work with CATIA V5 Parts and already skilled in Machining product

Prerequisites

Students attending this course must have knowledge of CATIA V5 Fundamentals and Numerical Control Infrastructure

Student Notes:

Table of Contents (1/2)

¢	Intr	oduction to Multi-Pockets Machining	5
	۲	About Multi-Pockets Operations	6
	۲	How to Access Multi-Pockets Operations	7
	۵	Creating a Multi-Pockets Operation: General Process	8
¢	Pov	ver Machining: Geometry	9
	۵	Presentation	10
	۵	Geometry Parameters	12
	۵	Planes	21
	۲	Start Point and Zone Order	25
¢	Pov	ver Machining: Strategy	27
	۲	Presentation	28
	۲	Machining Strategy Type	29
	۲	General Parameters	30
	۲	Center Parameters: Machining tab	35
	۲	Center Parameters: Radial tab	42
	۲	Center Parameters: Axial tab	43
	۲	Center Parameters: HSM tab	44
	۲	Center Parameters: Zone tab	45

6

6

Copyright DASSAULT SYSTEMES

Copyright DASSAULT SYSTEMES

\diamond	Side Parameters	46
Mu	Iti-Pockets Flank Contouring: Geometry	47
۲	Presentation	48
Mu	Iti-Pockets Flank Contouring: Strategy	50
۵	Strategy	51
Ма	naging Offsets	54
۲	Case 1: Part Offset	55
۲	Case 2: Minimum thickness on horizontal areas	56
۲	Case 3: Machine horizontal Areas until minimum thickness	57
۵	Case 4: Bottom Plane	58
٩	Case 5: Imposed Plane	59
٩	Case 6: Top Plane	60
۲	Case 7: Mix Case	61

Table of Contents (2/2)

Multi-Pocket Machining

STUDENT GUIDE
Student Notes:

Student Notes:

Introduction to Multi-Pockets Machining

You will become familiar with the Power Machining and Multi-Pockets Flank Contouring principles.

Student Notes:

About Multi-Pockets Operations

The Multi-Pockets operations provide you highly productive global rough to finish machining strategies.

MPG delivers a process focused solution to machine multi-cavity parts such as structural prismatic parts or aerospace structural parts.

This breakthrough solution delivers to NC programmers the possibility to machine multi-cavity parts with a mix of roughing and finishing tool paths.

The Multi-Pockets operations enable to machine the part in a global and automatic way that drastically reduces the programming time.

Multi-Pockets Flank contouring operation is useful for the machining of part having multiple pockets with an obvious view direction.

Creating a Multi-Pockets Operation: General Process Type the Name of the Operation. 1 (Optional because a default name is given ? × er machining. by the system 'Type_Of_Operation.X') Power machining.1 Name 2 omment: No Description 166 Type a line of comment (optional) Offset Group None Surfacic Feature.1 Feature: Double click to edit Offset on check Define operation parameters using the 5 tab pages Offset on part : 1mm . . <u>.</u> Strategy tab page **Geometry tab page Tool** tab page Feeds & Speeds tab page Minimum thickness to machine: 0.3mm -Macros tab page -Limit Definition Side to machine: Replay and/or Simulate the operation tool path Stop position: Offset: 1 Ignore holes on stock Diamete 4 Compute with tool holder Offset on assembly: Comm 1 Force Se 100 OK Preview Sancel

Power Machini	ng: Geometry	<u>s</u>
You will see the options in	the Geometry tab of Power Machining.	
	were machang.l	

Multi-Pocket Machining

Presentation (1/2)

This Tab Page includes a sensitive lcon dialog box that allows the selection of:

A and B : Rough stock and Part

Multi-pocket operation will remove all stock material in order to obtain final part. Offset can be applied on part.

C : Check (optional)

Elements to avoid during machining. Offset can be applied on check.

D and E : Top and Bottom planesDefine them to limit height machining

Offset on part : 1mm Offset on check : 0mm Start point(s) Limiting Criticur

STUDENT GUIDE

Student Notes:

Presentation (2/2)

This Tab Page includes a sensitive lcon dialog box that allows the selection of:

F: Imposed planes (two groups)

Force cutter to machine in this plane (global offset can be applied on each group)

G : Limiting contour

Re-limit machining area after stock and part definition

- H : Center zone order
 Define pocket machining order
- I : Start Point (optional)

Impose start point in open area (not in pocket)

Geometry Parameters (2/9): Rework Capability **Rework definition:** Stock definition can be either at Part Operation level or Operation level. To benefit from rework capability, don't define stock at operation level. Therefore algorithm will compute 'actual stock' taking care all previous operation defined (even non- Cavities Roughing operation) Do not forget to select Force Replay button to update this 'actual stock' if needed. It is recommended to use helical strategy for rework computation in order to have an optimized toolpath. Minimum thickness to machine parameter: When using rework capability one can use this Minimum thickness to machine: 0.3mm parameter that specify the minimum thickness taken into account for computation. Ignore holes on stock: When you select the check box Ignore holes on stock, holes on the rough stock are ignored. Then you can define the diameter under which holes are to be ignored. Diameter: 10mm Ignore holes on stock Compute with tool holder: Offset on assembly: Omm Compute with tool holder You can compute the tool path by selecting this option to avoid collisions with the tool holder. When this check box is selected, you can define an offset on the tool holder assembly. When this check box is cleared, the tool path is computed only with the tool.

-

ĥ

15

Student Notes:

copyri

Student Notes:

Planes (2/4): Imposed Planes

Top and bottom planes with maximum depth of cut allow to define cutting planes.

Adding to them, it is possible to define Imposed cutting planes, manually or using auto search on part. Imposed planes are the planes to which the cutter must positively reach.

Initial step: top and bottom planes selected, max. depth of cut = 10

=> 3 Cut plane automatic computation

Planes (4/4): Notes

Offset:

All planes (top, bottom, imposed) can be modified using offset capability. Cutting plane will always strictly respect the offset plane. Two groups of imposed planes are existing in sensitive picture thus allowing to define two different offsets on imposed planes.

Adding Imposed Plane with Search/View capability:

Scanning is performed on all planar surfaces of the part or only the planes that can be reached by the tool you are using (small pockets and counter-draft area are skipped) Be careful, offset on imposed planes has to be greater than the global offset on part, otherwise it will not be respected.

Adding imposed plane manually:

Any plane can be selected (physical part plane, plane created in WFS workbench etc)

Selection:

System automatically check if selected plane is normal with tool axis (e.g. if plane selection is refused, check operation tool axis)

Power Machining: Strategy

You will learn the options in the Strategy tab of Power Machining.

ower machining.1

? ×

Move	the cursor over a sensitive a		4
Genera	Center Side		~
Center Remainir	/Side/Bottom definition —— ng thickness for sides:	3mm	
Minimum	thickness on horizontal areas	s: Omm	
Mach	nine horizontal areas until mini	mum thickness	
Machinin	g tolerance:	0.1mm	
Cutting r	node:	Climb	
Machinin	g mode: By plane	Pockets only	
6 <u>4</u>			

STUDENT GUIDE

Multi-Pocket Machining

Presentation

This tab Page allows you to define

- General parameters (which are common to Center and Side)
- Thickness, Machining tolerance and Mode

The two separate tabs allow to define dedicated Center and Side parameters:

General	Center Side		
Machin	ing Radial Axia	al HSM Zone	
Tool pat	h style: Back and fo	orth	•
Contour	ing pass: After Back a	and forth	•
Contou	ring pass ratio:	10	?
Number	of contours:	1	글 ?
Fully en	gaged tool managemer	nt: None	•

General Center Side		
Machining Axial		
Bottom finish thickness:	0.05mm	2
Compensation output:	None	•

Maria the summer area a seculity and	(2)	•	-
move the cursor over a sensitive are.	a.		
2 2 2 2 1	2 2 2 2 2 2		
General Center Side			
Center/Side/Bottom definition			
Remaining thickness for sides:	3mm	2	
Ainimum thickness on horizontal areas:	Omm		
Machine borizontal areas until minin	num thickness		
Machine Honzonical areas undir minim	0.1mm		
achining tolerance:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
achining tolerance:	Climb	- ?	er.

STUDENT GUIDE

Student Notes:

Machining Strategy Type

Power machining operation allows you to define Center and Side tool path in a single operation. It is possible to define only Center parameters in both types.

Type Machining strategy: Center(1) only	
Move the cursor over a sensitive area.	
	FI 🎍
General Center Side	
Center/Side/Bottom definition	
Remaining thickness for sides:	3mm 🔮 ?-
Minimum thickness on horizontal areas:	Omm 🔮 ?
🔲 Machine horizontal areas until minimun	n thickness

Center only strategy selected. You need to define only Center parameters.

	·	
Move the cursor over a sensitive area.		
		4
	$\overline{2}$	
2	2	
	2	
2	2	
General Center Side		
Center/Side/Bottom definition		
	3mm	2
Remaining thickness for sides:		

Center and Side strategy selected. You need to define both Center and Side parameters.

General Parameters (2/5) Machine horizontal areas until minimum thickness option: Depending on cutting plane computed, horizontal area may 1 have till one cut depth remaining material. This cut depth can be machined by using 'Machine horizontal areas until 2 $\left(1\right)$ minimum thickness.' General Center Side Center/Side/Bottom definition Remaining thickness for sides: ŧ 3mm Minimum thickness on horizontal areas: Omm 2 Machine horizontal areas until minimum thickness If this option is activated, it will force to have one extra path on this horizontal area to respect minimum thickness.

STUDENT GUIDE

General Parameters (4/5)

Global offset on part vs. imposed plane vs. automatic detection of horizontal area

Global offset on part: This parameter is virtually creating a new part including this offset.

- Case 1 : If an imposed plane is defined on top of stiffener with 0.2mm offset
 - There will not be any tool path on top of stiffener (imposed plane is not visible)
 - There will be machining at this height while it is not in collision with the part
- Case 2 : If automatic detection is used with the option machining until thickness (still 0.2mm)
 - There will be a machining path at 1.2mm height

Machining tolerance

6

Student Notes:

Conventional: The back of the advancing tool cuts into material first. Machining mode (refer to outer part and pocket area definition): This option allows to select geometry machining between Outer part and pocket, Copyright DASSAULT SYSTEMES Pockets only and Outer part Copyright DASSAULT SYSTEMES

- Value of the maximum allowable distance between theoretical tool path and the computed tool path.
- Direction of cut definition:

General Parameters (5/5)

Climb: The front of the advancing tool cuts into the material first.

Sequencing:
 By plane or
 By area

Student Notes:

Center Parameters: Machining tab Center Side General Radial Axial HSM Zone Machining Helical Tool path style: Back and forth Concentric Contouring pass: After Back and forth Back and forth Contouring pass ratio: ? 10 ÷ Number of contours: 4 Fully engaged tool management: None None Trochoid MultiPass The Fully engaged tool management option is detailed in SMG Roughing. This option is used to optimize the management of tool overload in roughing. Based on automatic detection of full diameter engagement situation, the user has the ability to manage the tool overload by: Feed rate reduction, Extra machining planes or Addition of trochoidal paths. The main target is the reduction of the machining time and tool life improvement for hard material machining.

Student Notes:

.

•

?

Center Parameters: Back and Forth Back and forth strategy definition: Tool is moving following selected direction. The machining direction is reversed from one path to the next. Radial Axial HSM Machining Zone Tool path style: Back and forth Contouring pass: After Back and forth Optimize option let the algorithm choosing direction in order to minimize Contouring pass ratio: 10 change of direction in tool path. 4 / Optimize Analyze., The contouring passes can be applied Prior or After the back Tool path with and forth passes. **Back and forth** In 'Prior mode' it is possible to define a multi level contouring pass (in order to manage tool loading). Contouring pass: Prior to Back and forth • Contouring pass ratio: 50 ŧ ? Number of contours: 3 -?

Student Notes:

Center Parameters: Helical (1/4)

Helical strategy definition:

Tool moves in successive concentric passes from the boundary of the area to machine towards the interior or from the interior to the boundary.

• Helical Movement:

Inward:

Tools start from a point on zone boundary and follow concentric passes parallel to boundaries towards interior.

Outward:

Tool starts from a point inside the zone and follow concentric passes parallel to boundaries.

Tool path with

Helical

Center Parameters: Concentric

Concentric strategy definition:

- Tool is moving following concentric passes.
- Tool removes the most constant amount of material possible at each concentric pass.
- Tool is never fully engaged in material.
- Tool path is always respecting given cutting mode.
- Approach macro is only helix one.

Copyright DASSAULT SYSTEMES

STUDENT GUIDE

Student Notes:

Center Parameters: Radial tab

There are four different ways to define distance between passes:

- Overlap ratio
- Overlap length
- Step over ratio
- Step over length

Overlapping

Overlap ratio: It is the overlap between two passes, given as a percentage of the tool diameter.

Overlap length:
It is the distance between two
passes with respect to a tool
diameter ratio recovery

Axial

Machining Radial

Tool diameter ratio:

Max, distance between pass

Stepover:

HSM Zone

Stepover length

Overlap ratio

Overlap length

Stepover ratio

Stepover length

	1	\$		1
-		Ĵ.		ļ
-	_	2	_	

?

-

Stepover

Stepover ratio: It is the stepover between two passes, given as a percentage of the tool diameter.

Stepover length: It is the maximum distance between two passes.

Copyright DASSAULT SYSTEMES

Center Parameters: Axial tab

Maximum cut depth:

It defines the maximum depth of cut per axial level. This value will be respected for each axial level from top to bottom plane.

Variable cut depths:

Copyright DASSAULT SYSTEMES

It allows to define different values of maximum depth of cut depending on axial levels.

					215
	IPININS .				
e cut (
e cut (To	Max. cut depth	Distance from top:	10mm	•
e cut (To 10mm Bottom	Max, cut depth 2mm 5mm	Distance from top: Max. cut depth:	10mm 2mm	•
ie cut (To 10mm Bottom	Max, cut depth 2mm 5mm	Distance from top: Max. cut depth:	10mm 2mm Add	4
	To 10mm Bottom	Max, cut depth 2mm 5mm	Distance from top: Max. cut depth:	10mm 2mm Add Remove	4
e cut (To 10mm Bottom	Max, cut depth 2mm 5mm	Distance from top: Max. cut depth:	10mm 2mm Add Remove	47

HSM |

Axial

Zone

5mm

2

Machining Radial

Maximum cut depth:

STUDENT GUIDE Student Notes:

Center Parameters: HSM tab

High Speed Milling technological parameter:

In order to be compliant with machine technology, this parameter allows to avoid corners in toolpath, by defining the minimum radius of tool path.

It is possible to have a different cornerization on part contouring (most of the time a smaller one to reduce rework).

Center cornerization is linked with 'Step over distance'.

A warning message as shown during Tool path computation is raised in case of incompatibility and if the value is set at maximum.

Machining Radial Axial HSM	1 Zone
High speed milling	
Corner radius:	1mm 📑 🖓
Corner radius on part contouring	: 1mm

Corner radius: It defines the radius of the rounded ends of passes. The ends are rounded to give a smoother path that is machined much faster. The corner radius is not applied to the finish path.

Corner radius on part contouring: It specifies the radius used for rounding the corners along the Part contouring pass of a HSM operation. This radius must be smaller than Corner radius value. STUDENT GUIDE

Student Notes:

Center Parameters: Zone tab

Zone definition:

This parameter is acting like a 'pocket filter', which means small pockets will be removed.

To be activated you must define a "noncutting diameter (Dnc)" parameter in tool description.

Geometry	Technology	Feeds & Speeds	ণ্ট 💽
Nominal diameter (D):		25mm	-
Corner radius	(Rc):	4mm	-
Overall length	(L):	100mm	-
Cutting length	(Lc):	50mm	-
Length (l):		60mm	-
Body diameter	r (db):	25mm	-
Non cutting di-	ameter (Dnc):	17mm	A

Based on this value the following formula is applied to define the smallest machinable pocket length:

XX(mm) = Dnc+D+2 x (machining tolerance)

There will not be machining path in pockets where tool can't plunge without respecting maximum plunge angle.

Machining	Radial	Axial	HSM (Zone	
Pocket filt The pop cutting	er na diameter	is 17 mm			
The smallest	pocket lengt	th is 44.2	mm		
·					
	·····	, ,			
-4mm		Ē		+ 	Ŧ
 <u>c=4mm</u>				D=25mm	_

	STUDE
Side Parameters	<u>Student Notes:</u>
Machining tab: Bottom finish thickness: Define the thickness value left on bottom of part during last level of side finish tool path	
Compensation output: Automatic insertion of CUTCOM instruction in tool path to manage tool compensation	
Compensation output: 2D radial tip	
Axial tab: Maximum cut depth: 5mm 2	

Multi-Pockets Flank Contouring: Geometry You will see the options in the Geometry tab of Multi-Pockets Flank Contouring . **1** Multi-Pockets Flank Contouring.1 ? X Name: Multi-Pockets Flank Contouring, 1 Comment: No Description 100 0 int Move the cursor over a sensitive area. Offset on part : 1mm Offset on check : 1mm Offset on part bottom : 1mm Safety plane Limi Limit Definition Side to machine: Inside * Stop position: On • Offset: Omm -Collision Checking Offset on tool: Omm ÷ Offset on tool assembly: -2mm Se 10 • OK Preview Scancel

STUDENT GUIDE

Multi-Pocket Machining

Presentation (1/2)

This Tab Page includes a sensitive lcon dialog box that allows the selection of:

📦 A: Part

Multi-pocket flank contouring operation operation will machine the part with multiple pockets. Offset can be applied on part.

🗑 B : Drive

Element that determines the drive surfaces to be followed by the flank of the tool.

- C: Check (optional)
 Elements to avoid during machining.
 Offset can be applied on check.
- D and E : Top and Bottom planes
 Define them to limit height machining.
 Offset can be applied on part bottom.

STUDENT GUIDE

Student Notes:

Presentation (2/2)

This Tab Page includes a sensitive lcon dialog box that allows the selection of:

F : Imposed planes

Force cutter to machine in this plane (global offset can be applied on each group)

G : Safety plane

The plane that the tool will rise to at the end of the tool path in order to avoid collisions with the part.

H : Limiting contour

Re-limit machining area after stock and part definition. It is a 2D limitation along the view direction

I : Pocket zone orderDefine pocket machining order

STUDENT GUIDE

Student Notes:

Multi-Pockets Flank Contouring: Strategy

You will learn the options in the Strategy tab of Multi-Pockets Flank Contouring.

ulti-Pock	ets Flank Contouring.1		<u>? ×</u>
Name:	Multi-Pockets Flank Contou	iring.1	
Comment:	No Description		
			1
Mov	e the cursor over a sensitive	area.	
1			
		~	
		\sim	
	1/2/1	\sim	
	4	V.	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Machir	ning Stepover Finishir	ng Tool Axis HSM	Compe ()
Machinii	ng tolerance:	0.03mm	
Max dis	cretization angle:	180deg	?
Cuttina	mode:	Later 1	
Machini	By plane	Outer part and poo	:kets 🔟 ?
	See 9		•

Multi-Pocket Machining

Strategy (1/3)

Machining

Machining tolerance: Value of the maximum allowable distance between theoretical and computed tool path.

- Max discretization angle: Maximum angle between two consecutive points that the machine is able to achieve.
- Machining mode :

By plane: The whole part is machined plane by plane

By area: The whole part is machined area by area

Select geometry machining between Outer part and pockets, Pockets only and Outer part

Stepover:

It defines Radial and Axial parameters.

Machining Stepover	Finishing	Tool Axis	HSM Compe	Þ
Machining tolerance:		0.03mr	n 📑	?
Max discretization angle:		180deg	, 🔒	?,-
Cutting mode:		Climb	•	?
Machining mode: By plane	-	Outer part a	and pockets 💌	?,-

Cutting mode:

CI	im	b		(
<u> </u>		~		

Conventional

Either

STUDENT GUIDE

Multi-Pocket Machining

					STUDENT GUID
(2/3)					<u>Student Notes:</u>
le finish at each finish pass le finish last levr le finish each lev le finish at each le finish at last l	i level & bottom 💽 🚺 el vel level & bottom evel & bottom	Machining Mode: Side finish thi Side thickness Bottom finish Distance bett	Stepover Finishing Tool Axis H Side finish at each level & bottom ckness: Omm s on bottom: Omm thickness: Omm ween paths: Smm	HSM Compe F	
iss: de led sh level	Side finish last level: Only one Side finish is added on the last level	Side finish each level: One Side finish pass is added by the finishing level	Finish bottom only: The last passes where the tool is in contact with the bottom detected	Side finish at each level & bottom: Addition of Side finish at each level and finish bottom	
Side f level Addit finish and fi	finish at last & bottom: ion of Side at last level inish bottom	Side finish	Side thickness Bo	ttom finish	
	(2/3) e finish at each finish pass e finish last levre e finish each level sh bottom only e finish at each e finish at last ss: de led h level Side fi level Additt finish and fi	(2/3) e finish at each level & bottom finish pass e finish last level e finish at each level & bottom e finish at each level & bottom e finish at last level & bottom e finish at last level & bottom ss: Side finish last level: be de bottom h level Side finish last level: b level Side finish at last level Side finish at last level Side finish at last level Side finish at last level Addition of Side finish at last level and finish bottom	 (2/3) e finish at each level & bottom finish at each level & bottom e finish last level e finish at each level & bottom Side finish last level: b dotto on the last level b level Side finish at last level e level & bottom: Addition of Side finish at last level and finish bottom 	(2/3) e finch at each level & bottom e finch at level & bottom Stide finish at level & bottom Stide finish at last level Only one Side finish is added on the last level level stide finishing level b level Stide finish at last level stide finishing level Stide finish at last level addition of Side finish at last level and finish bottom Side finish at last level and finish bottom	(2/3) Implementation of side finish at last level a bottom Side finish at last level bottom Side finish at last level a bottom Side finish at last level and lovel a bottom Side finish at last level and linesh bottom

Student Notes:

Strategy (3/3)		
Tool Axis Fanning distance: The distance at the		
beginning and the end of the motion where fanning takes place.		Machining Stepover Finishing Tool Axis H5M Compe Fanning distance: 5mm ? Max tilt angle: 45deg ?
Max tilt angle: The max angle at whic the tool axis can tilt.	h	
HSM		Machining Stepover Finishing Tool Axis HSM Compe
Cornering: defines the corner radius.		Cornering ?
Cornering on side finish path: The co on side finish path radius value.	orner	Corner radius: 1mm 🔿 ? Corner radius: 1mm 🔿 ? Corner radius: 1mm 🔿 ?
Compensation		
Compensation output:		Stepover Finishing Tool Axis HSM Compensation
ATT ATT		Compensation output: No No 3D Radial (PQR) 2D Radial - TIP (G41/G42)
No 3D Radial (PQR) 2	D Radial- TIP (G41/G42)	

Student Notes:

Managing Offsets

You will learn the offset management in detail.

Multi-Pocket Machining

```
Case 1: Part Offset
     Parameters:
         ♦ Part offset =1mm (blue) → forbidden to go under this value
            Max depth of cut = 3mm
                                                                                                                                   Computed planes
           General Center Side
           -Center/Side/Bottom definition
                                                                    Condition to be respected:
                                                                                                                                     3mm
          Remaining thickness for sides:
                                                   ?
                                                                    Offset on each horizontal area ≥ part offset
                                      Omm
          Minimum thickness on horizontal areas:
                                                   Omm
                                                      ?
                                                                                                                                     Each
          Machine horizontal areas until minimum thickness
  Z=45
          2mm
                                                                                                                        2mm
                                                                                                    3x3mm
  Z=40
                                     6x3mm
                                                         9x3mm
                 6
                                                                           8x3mi
  Z=35
                  x3mm
  Z=30
                                         Offset=2mm
  Z=25
                   -
                                                                                   Offset=1mm
                                            2
                                                          ↓ Offset=3mm
  Z=20
                                                                                        4
  Z=15
                 ✓ Offset=2mm
                                                                       3
  Z=10
                                                                                                      Offset=1mm
  Z=05
                        1
                                                                                                              5
  Z=00
Copyright DASSAULT SYSTEMES
         Compute of the remaining material depth on horizontal areas =
             H-D*N ≥ Part offset + Min thickness on horizontal areas
         H : depth to remove
         D : max depth of cut
         N : number of level
```


Multi-Pocket Machining

Multi-Pocket Machining

```
Student Notes:
     Case 4: Bottom Plane
      Parameters:
        ♦ Part offset =1mm (blue) → forbidden to go under this value
           Max depth of cut = 3mm
                                                                                                                                planes
            Define bottom plane with 0.5mm offset ----- (Z=15.5)
                                                                                                                                   шш
         General Center Side
                                                                   Condition to be respected:
                                                                                                                                Computed
                                                                                                                                   2.95 |
         -Center/Side/Bottom definition
                                                                   Offset on each horizontal area ≥ part offset +
         Remaining thickness for sides:
                                                ٢
                                                    ?
                                    Omm
                                                                   Min thickness on horizontal areas (1.5mm)
                                                                                                                                   Each
         Minimum thickness on horizontal areas:
                                                 0.5mm
                                                    2
         Machine horizontal areas until minimum thickness
  Z=45
          2.05mm
                                                                                                                     2.05mm
                                                                            .95mm
                                     95mm
                                                        95mm
  Z=40
                 6
  Z=35
                                     6X2.
                                                        9x2.
                                                                            7x2.
                                          2.3mm
  Z=30
                                                                                  4.35mm
  Z=25
                                            2
                                                              3.45mm
  Z=20
                                                                                                         10.5mm
                     5.5mm
                                                                                      4
  Z=15
                                                                      3
  Z=10
  Z=05
                       1
                                                                                                            5
  Z=00
       1. Recomputed depth to have regular depth of cut: H( top-bottom)/N closest
Copyright DASSAULT SYSTEMES
                                                                                                         Added plane to reach
       than max depth of cut = 2.95 mm
                                                                                                         bottom plane (+ offset on
       2. Compute of the remaining material depth on horizontal areas ≥ part offset +
                                                                                                         bottom)
       Min thickness on horizontal areas
       H (top-bottom): depth to remove from top of the stock to bottom plane
       N: number of level
       The bottom path is done only in zones 1 & 5.
```


Multi-Pocket Machining

Multi-Pocket Machining

To Sum Up

In this course you have seen:

- Necessary geometrical elements to define Power Machining and Multi-Pockets Flank Contouring operations
 - Part (can be composed of different elements)
 - Stock
 - Planes (top, bottom, imposed)
- General parameters
- Center parameters
 - Machining strategies of Power Machining
 - Helical, Back and Forth, both with HSM option
 - Radial and Axial strategies
- Side parameters
- Added Exercise