

INSTRUCTOR GUIDE

About this course

Objectives of the course

Upon completion of this course you will be able to:

- Understand the differences between harmonic and transient analyses
- Define load and restraint excitations
- Ensure that the appropriate pre-requisites are defined for the required excitation case
- Visualize and animate 3D images of the analysis results
- Generate translation, velocity and acceleration graphs
- Export result data in Text or Excel format

Targeted audience

Structural Analysts

Prerequisites

Students attending this course should have knowledge of CATIA V5 Fundamentals, Generative Part Structural Analysis Fundamentals

Instructor Notes:

Copyright DASSAULT SYSTEMES

	ntroduction to Dynamic Analysis	4
	What are the Different Types of Dynamic Analysis	5
:	Load or Restraint Excitation	6
	Prerequisites	7
G	DY Pre-Processing	8
	Harmonic Response Case	9
	Transient Response Case	31
,	To Sum Up	51
F	lesults Visualization	52
	Generating Images	53
	Generating 2D Display	57
	To Sum Up	64
Ν	laster Exercise: Transient Dynamic Analysis	65
	Hood Analysis Presentation	66
(Transient Dynamic Analysis: Computing a Static Analysis on	67
	Transient Dynamic Analysis: Computing the Frequency Analy	68
	Transient Dynamic Analysis: Defining the Transient Dynamic	69

Copyright DASSAULT SYSTEMES

CATIA allows you to	define two different types of exci	itation.
Once you have chos he excitation. In bo	en the type of dynamic response th cases, you can either apply a "I	you want, you have to specify the nature of oad" or a "restraint" excitation
	 Load excitation Restraint excitation New Restraint excitation 	eference
Load Excitation S frequency or the	Set: It allows to define a dynamic le time, depending on the dynamic c	oad, that will fluctuate according to the ase you have chosen

Instructor Notes:

Copyright DASSAULT SYSTEMES

Harmonic Response Case

You will see different excitations cases used in Harmonic Response Analysis

Harmonic: Load Excitation Case
 Harmonic: Restraint Excitation Case
 To Sum Up

General Process: Load Excitation (1)Compute a Static analysis (loads and restraints) eshed part 3 Compute a frequency (4) analysis referencing to the Define Dynamic Response case restraints of the static case Define a frequency referencing the frequency case Modulation file, damping, with a new Load excitation set load excitation - 🗆 × Harmonic Dynamic Re Frequency case solution Reference Frequency Case Solution.1 Load excitation New O Reference Restraint excitation 6 (5) **Results interpretation 2D Display Dynamic response** Local sensor set computation DASSAULT SYSTEMES . 🗆 🗙 um sampling: OHz cimum sampling: 10H of stens: 20 Copyright OK Scancel

Instructor Notes:

- Donner des procès généraux quand cela est possible pour illustrer
- What , How, Why ne sont pas obligatoires mais doivent guider et aider dans la rédaction du foils.

Forme

- ATENTION de na pas modifier la taille du cadre intérieur de la diapo qui est dimensionne pour pouvoir imprimer en format Américain aussi bien que Européen
- Essayer de respecter la palette de couleurs proposée
- Ne pas oublier de mettre a jour le titre du cours dans le masque
- Chaque mot du titre doit commencer par une majuscule
- Style:
- Utiliser You... A la place des phrases impersonnelles
- Utiliser la voix active plutot que passive
- Ecrire des phrases simples: Souvenez vous que ce document peut etre traduit en d'autres langues et donc nous devons eviter toutes ambiguites.

INSTRUCTOR GUIDE

Defining a Harmonic/Load Excitation Case 🥰

When defining a 'Dynamic Response Case' you have to select different data.

Instructor Notes:

How to	Define a	Damping	Set	(3/3)
--------	----------	---------	-----	-------

Modal Damping Demoing Definition	Rayleigh Damping Damping Definition	
Image: Critical damping ratio Image: Critical damping for all the modes Cobal ratio: Lets you define the factor of the critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case <t< th=""><th>Damping Definition Image: Constraint of the second sec</th><th>The selected mode. Case</th></t<>	Damping Definition Image: Constraint of the second sec	The selected mode. Case

Instructor Notes:

Copyright DASSAULT SYSTEMES

Before you compute an analysis, you have to speci	fy the frequency sampling.
 Modulations.1 Frequency Modulation.1 2D Display - Frequency Modulation.1 White Noise.1 White Noise.1 Static Case A Static Case A Frequency Case A Frequency Case Frequency Case Solution.1 Load Excitation.1 Damping.2 Harmonic Dynamic Response Solution.1 Sensors.4 	Harmonic Dynamic Response Set
The response is computed in the frequency domain The minimum and the maximum sampling correspo the frequency range of interest. The Number of step alculated points inside the frequency range.	on a regular sampling. nd to the lower and the upper bounds of os corresponds to the number of
To get more precision in the peak value, you can eit the frequency range, or focus on the peak by choos second solution is better.	ther increase the number of steps inside ing a smaller frequency range. The

Instructor Notes:

- Donner des procès généraux quand cela est possible pour illustrer
- What , How, Why ne sont pas obligatoires mais doivent guider et aider dans la rédaction du foils.

Forme

- ATENTION de na pas modifier la taille du cadre intérieur de la diapo qui est dimensionne pour pouvoir imprimer en format Américain aussi bien que Européen
- Essayer de respecter la palette de couleurs proposée
- Ne pas oublier de mettre a jour le titre du cours dans le masque
- Chaque mot du titre doit commencer par une majuscule
- Style:
- Utiliser You... A la place des phrases impersonnelles
- Utiliser la voix active plutot que passive
- Ecrire des phrases simples: Souvenez vous que ce document peut etre traduit en d'autres langues et donc nous devons eviter toutes ambiguites.

How to	Define a	Damping	Set	(3/3)
--------	----------	---------	-----	-------

Damping Definition	Damping Definition	
Critical damping ratio	Global ratio:	
	Alpha (mass ratio):	
Gibbai racio j	Beta (stiffness ratio): 1	
Definition mode by mode		
Critical damping ratio	Alpha (mars ratio)	
Nu Frequency Critical damping ratio	Beta (stiffness ratio)	
1 22.091 1 2 22.6537 1	Nu Frequency Alpha (mass r Beta /	(stiffnes
3 93.9417 1	1 22.091 1 1	
4 315.17 1	3 93.9417 1 1	
5 531.437 1 6 727.543 1	4 315.17 1 1	
7 836.799 1	5 531.437 1 1	
8 1031.02 1	7 836,799 1 1	
9 1126.95 1	8 1031.02 1 1	
10 1445.46 1	9 1126.95 1 1	
	10 1445.46 1 1	
a or 1	- <u>-</u>	
		S OK
bal ratio: lets you define the factor cal damping for all the modes nition mode by mode: lets you def cal damping ratio independently fo de. Multi-selection is available in the Modify the modal damping parameters click on OK	the Global ratio: lets you define th and/or Beta (stiffness ratio) co modes the Definition mode by mode: lets case (mass ratio) and/or Beta (stiffn coefficients independently for Multi-selection is available in t 5 Modify the Rayleigh dampin parameters and click on OK	e Alpha (mass rat pefficients for all the you define the Al ness ratio) each selected mo this Case

Instructor Notes:

Copyright DASSAULT SYSTEMES

Copyright DASSAULT SYSTEMES

Instructor Notes:

second solution is better.

Transient Response Case

You will see different excitation cases used in Transient Response Analysis

Transient: Load Excitation Case
 Transient: Restraint Excitation Case
 To Sum Up

General Process: Load Excitation $(\mathbf{1})$ Compute a Static analysis (loads and restraints) shed part (3) **Define Dynamic Response case** Compute a frequency (4 referencing the frequency case analysis referencing to the with a new Load excitation set restraints of the static case **Define a Time** Modulation file, damping, Transient Dynamic Resp load excitation Frequency case solution Reference Load excitation New O Reference Restraint excitation 6 (5) **Results interpretation Dynamic response** 2D Display set computation Local sensor DASSAULT SYSTEMES Name Tran nimum sampling: 0s Maximum sampling: 10 Number of steps: 20 Copyright OK Gancel

Instructor Notes:

- Donner des procès généraux quand cela est possible pour illustrer
- What , How, Why ne sont pas obligatoires mais doivent guider et aider dans la rédaction du foils.

Forme

- ATENTION de na pas modifier la taille du cadre intérieur de la diapo qui est dimensionne pour pouvoir imprimer en format Américain aussi bien que Européen
- Essayer de respecter la palette de couleurs proposée
- Ne pas oublier de mettre a jour le titre du cours dans le masque
- Chaque mot du titre doit commencer par une majuscule
- Style:
- Utiliser You... A la place des phrases impersonnelles
- Utiliser la voix active plutot que passive
- Ecrire des phrases simples: Souvenez vous que ce document peut etre traduit en d'autres langues et donc nous devons eviter toutes ambiguites.

INSTRUCTOR GUIDE

How to De	efine a Da	amping S	Set (3/3)
-----------	------------	----------	-----------

Modal Damping	Rayleigh Damping	
Image: Modal Damping Damping Definition Critical damping ratio Global ratio Image: Critical damping for all the modes Definition mode by mode: Definition mode by mode: Image: Critical damping ratio Image: Cr	Payleign Damping Partyling Definition Global ratio: Alpha (mass ratio): 1 Definition mode by mode Alpha (mass ratio): 1 1 22.091 2 22.6537 1 1 3 9.9417 1 1 2 22.6537 1 1 3 9.9417 4 315.17 1 1 5 51.437 1 1 9 1126.95 10 145.46 10 145.46 10 145.46 10 145.46 10 145.46 10 145.46 10 145.46 10 145.46 10 145.46	(affines) (affines) (afficients for all the you define the Alpha ness ratio) each selected mode. this Case

Instructor Notes:

Copyright DASSAULT SYSTEMES

	Transient Dynamic Response Set
	Before you compute an analysis, you have to specify the time sampling.
	 Translent Dynamic Response Case Frequency Case Solution.1 Deformed Mesh Von Mises Stress (nodal values) Translational displacement magnitude Load Excitation.4 Damping.15 Transient Dynamic Response Solution.6 Sensors.17
	The response is computed in the time domain on a regular sampling. The minimum and the maximum sampling correspond to the lower and the upper bounds of the time range of interest. The Number of steps corresponds to the number of calculated points inside the time range.
Copyright DASSAULT SYSTEMES	To get more precision in the peak value, you can either increase the number of steps inside the time range, or focus on the peak by choosing a smaller time range. The second solution is better.

Instructor Notes:

- Donner des procès généraux quand cela est possible pour illustrer
- What , How, Why ne sont pas obligatoires mais doivent guider et aider dans la rédaction du foils.

Forme

- ATENTION de na pas modifier la taille du cadre intérieur de la diapo qui est dimensionne pour pouvoir imprimer en format Américain aussi bien que Européen
- Essayer de respecter la palette de couleurs proposée
- Ne pas oublier de mettre a jour le titre du cours dans le masque
- Chaque mot du titre doit commencer par une majuscule
- Style:
- Utiliser You... A la place des phrases impersonnelles
- Utiliser la voix active plutot que passive
- Ecrire des phrases simples: Souvenez vous que ce document peut etre traduit en d'autres langues et donc nous devons eviter toutes ambiguites.

How to	Define a	Damping	Set	(3/3)
--------	----------	---------	-----	-------

Modal Damping Demoing Definition	Rayleigh Damping Damping Definition	
Image: Critical damping ratio Image: Critical damping for all the modes Cobal ratio: Lets you define the factor of the critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case Image: Critical damping ratio independently for each mode. Multi-selection is available in this case <t< th=""><th>Damping Definition Image: Constraint of the second sec</th><th>The selected mode. Case</th></t<>	Damping Definition Image: Constraint of the second sec	The selected mode. Case

Instructor Notes:

Copyright DASSAULT SYSTEMES

	INSTRU	JCTOR	GUIDE
--	--------	-------	-------

Introduction You will see the different way to visualize results. To results you will use the same tools as the ones you use	Image I
 Whatever the dynamic case you have computed, you The deformed mesh The Von Mises Stress The Displacements The Displacements The Principal Stress The Precision The Precision 	 Can visualize: Harmonic Dynamic Response Case Requency Case Solution.1 Load Excitation.4 Damping.13 Harmonic Dynamic Response Solution.8 Harmonic Dynamic Response Solution.8 Von Mises Stress (nodal values) Deformed Mesh Translational displacement vector Sensors.15
Von Mises Stress (nodal values) object Von Mises Stress (nodal values) object Activate/DeactMate Export Data Von Save As New Template Report	<u>D</u> efinition

Anim You will	see how to animate images according to the occurrences of your choice. To
display	GDY results you will use the same tools as the ones you use under GPS/EST. armonic Dynamic Response Case Frequency Case Solution.1 Load Excitation.4 Damping.13 Harmonic Dynamic Response Solution.8 Load Stress (nodal values) Display the image of your choice
	Sensors.15 You can select all the frequencies available or animate the occurrence of your choice
	Animation Animate On All occurrences Memorize frames Close Animate On All occurrence Animate

Instructor Notes:

Master Exercise: Transient Dynamic Analysis

You will practice concepts learned throughout the course by building the master exercise and following the recommended process

Hood Analysis Presentation

Transient Dynamic Analysis: Computing a Static Analysis on the Hood

Transient Dynamic Analysis: Computing the Frequency Analysis on a Hood

Transient Dynamic Analysis: Defining the Transient Dynamic Case on a Hood

