

Introduction to Aerospace Sheet Metal Design	8
ASL Workbench Presentation	9
Master Exercise Presentation	13
Master Exercise Step 1: Setting an Environment	14
ASL Parameters	15
Loading Data	16
Modifying Default Thickness and Bend Radius	18
Modifying Default Bend Allowance	19
Choosing Joggle Compensations	20
Runout Formulas	21
Master Exercise Step 2: Setting Default Part Parameters	23
Creating the Web	24
Creating the Web	25
Creating a Surfacic Web	27
Modifying the Web	29
Master Exercise Step 3: Creating the Web	30
Creating a Surfacic Flange	31
Creating a Surfacic Flange	32

Copyright DASSAULT SYSTEMES

Intersecting Surfacic Flanges on a Web	39
Modifying a Surfacic Flange	40
Master Exercise Step 4: Creating Surfacic Flanges	41
Creating a Corner Relief	42
Creating a Corner Relief	43
Modifying a Corner Relief	45
Create Corner or Chamfer on Sharp Edges	46
Master Exercise Step 5: Creating a Corner Relief	47
Creating a Joggle	48
Creating a Joggle by Depth	49
Creating a Joggle with an Input Surface	52
Joggle Run out Formulas	54
Modifying a Joggle	55
Master Exercise Step 6: Creating a Joggle	56
Creating Flanges other than Surfacic Flanges	57
Creating a Flange	58
Create a Hem	59
Create a Tear Drop	60

Copyright DASSAULT SYSTEMES

Table of Contents (3/5)

	Create a User Flange	61
	Modifying Flanges other than Surfacic Flanges	62
¢	Creating a Cutout	63
	Creating a Cutout	64
	Modifying a Cutout	69
	Master Exercise Step 7: Creating a Cutout	70
•	Creating Stamps	71
	Creating a Flanged Hole	72
	Creating a Bead	73
	Creating a Circular Stamp	74
	Creating a Surface Stamp	75
	Creating a Flanged Cutout	76
	Creating a Stiffening Rib	77
	Creating a Curve Stamp	78
	Creating a User Stamps	79
	Modifying a Stamp	81
	Master Exercise Step 8: Creating a Flanged Hole and Bead	82
	Creating a Hole	83

Instructor Notes:

Copyright DASSAULT SYSTEMES

Table of Contents (4/5)

	Creating a Hole	84
¢	Creating a Circular Cutout	88
	Creating a Circular Cutout	89
	Modifying a Circular Cutout	90
	Point or Curve Mapping	91
	Duplicate ASL Feature by applying a Pattern	92
	Master Exercise Step 9: Creating Circular Cutouts	93
¢	Modifying a Feature	94
	Modifying a Feature	95
	Master Exercise Step 10: Modifying Features	98
¢	Generating Folded and Flattened parts	99
	Folding / Unfolding the Part	100
	Using Multi-View	101
	Flat Solid linked to ASL Designed Part	102
	Master Exercise Step 11: Flattening the Part	103
¢	Drawing Generation	104
	Drawing Generation	105
	Master Exercise Step 12: Drawing Generation	106

Copyright DASSAULT SYSTEMES

¢

¢,

INSTRUCTOR GUIDE

Table of Contents (5/5)

Administration	107
About Standards	108
Setting Standard Parameters	109
Setting Parameters for a Designer	110
Customizing Standards Files to define Design Tables	111
How to use Knowledge Expert	112
Additional Exercises	114
Additional Exercise: Aerostructure	115
Additional Exercise: Bracket	116
Additional Exercise: Fighter Web Structure	117
Additional Exercise: Rib	118
Additional Exercise: Fairing Linking	119

<section-header><section-header><section-header><text>

Master Exercise: Fighter Airframe

Exercise Presentation

In this step you will see :

- Design Intent: Fighter Airframe
- Design Process: Fighter Airframe

Copyright DASSAULT SYSTEMES

ASL Parameters

In this lesson you will learn the setting parameters of an Aerospace Sheet Metal part

ę

Jogge
FigWethod2Thk1.xls
Flg\Method2Thk16.xls
FigWethod2Thk2.xls
Flg\Method2Thk25.xls

Copyright DASSAULT SYSTEMES

Loading Data (1/2)

You can link parameters table files such as Extruded Hole Std or Bead Std for example as well as Joggle Compensation Methods to the Sheet Standard . xls file, just by indicating their name in the corresponding column.

SheetMetalStandard	Thickness (mm)	RadiusTable	ExtrudedHoleStd	BeadStd	IndexHoleStd	ManufacturingHoleStd	ClearanceHoleStd	FastenerHoleStd	CircularStampStd	JoggleCompensationMethod1	JoggleCompensationMethod2	JoggleCompensationOnFlange
Aluminum	1.2	RadAl12 .xls	ExtrudedHoles .xls	Stiffening_Beads .xls	IndexHole Table.xls	ManufacturingHole Table.xls	ClearanceHole Table.xls	FastenerHole Table.xls	CircularStamp .xls	Jog_Comp_ Method1.xls	Jog_Comp_ Method2.xls	FigWethod2Thk1.xls
Aluminum	1.6	RadAl16 .xls	ExtrudedHoles .xls	Stiffening_Beads .xls	IndexHole Table.xls	ManufacturingHole Table.xls	ClearanceHole Table.xls	FastenerHole Table.xls	CircularStamp .xls			FlgWethod2Thk16.xls
Aluminum	2	RadAl20 .xls	ExtrudedHoles .xls	Stiffening_Beads .xls	IndexHole Table.xls	ManufacturingHole Table.xls	ClearanceHole Table.xls	FastenerHole Table.xls	CircularStamp .xls			FlgWethod2Thk2.xls
Aluminum	2.5	RadAl25 .xls	ExtrudedHoles .xls	Stiffening_Beads .xls	IndexHole Table.xls	ManufacturingHole Table.xls	ClearanceHole Table.xls	FastenerHole Table.xls	CircularStamp .xls			FlgWethod2Thk25.xls

Instructor Notes:

Runout Formulas (2/2)

	A	В	С	D	E
1	JoggleRunoutFormulaName	JoggleRunout_a1	JoggleRunout_a2	JoggleRunout_a3 (mm)	JoggleRunoutFormulaBody
2	Formula 1	1.5	2.5	0.5	a1*DEPTH+a2*THICKNESS+a3
3	Formula 2	2	0.5	0	a1*DEPTH+a2*(STARTRADIUS+ENDRADIUS)
4	Formula 3	3	0.5	Ó	a1*THICKNESS+a2*DEFAULTBENDRADIUS
5	Formula 4	0.5	0	4.5	a1*DEPTH+a3

- There is a particular syntax to use in order to create the design table.
- As you can see on the picture, it can be described as follows :
 - The A Column (Formula Names) contains String Parameters
 - The B and C Columns contain Real Parameters (no unit)
 - The D Column contains Length Parameters (unit)
 - The E Column (Formula Bodies) uses previous Real & Length parameters (a1, a2, a3) for its own

formulas (as you can see, not all existing parameters must be used in the formula)

e web is the fix feature when we unfold the part	Web Definition
Click the Web icon	Support Plane.1 Invert Material Dir. Boundary N° Limits No Selection
Select a plane or a close sketch which support the web	Add After Replace Insert Multiple Sel. Add Before Remove Edit Remove All
Select curves, planes or surfaces to define the limits of the web.	Unfold position Reference wire: No Selection Invariant point: No Selection OK Cancel Preview ? X Sumport: Place 1
The limiting elements must intersect.	N° Limits Selection View 1 OML Folded View 2 Curve.39 Folded View 3 Line.1 Folded View 4 Sketch.2 Folded View
	Add After Replace Insert Multiple Sel Add Before Remove Edit Remove All Unfold position Reference wire: [No Selection Invariant point: [No Selection

٦

	Web Definition ? X
A. Click the Web icon	Support: Extrude.1 Invert Material Dir. Boundary
B. Select a surface that can be developed, even a curved one, which supports the web	№ Limits Selection View No Selection Image: Selection View Image: Selection Image: Selection View
C. Select a reference wire and an invariant point as references for the unfolding of the web.	Invariant point: No Selection OK Cancel Preview Web Definition
The reference wire must be located on one of the limits and the invariant point on the reference wire.	Support: Extrude.1 Invert Material Dir. Boundary N° Limits Selection View
Select curves, planes or surfaces to define the limits of the web. The limiting elements must intersect.	1 Extrude.4 Folded View 2 Project.1 Folded View 3 Extrude.2 Folded View 4 Extrude.3 Folded View 4 Add.ARker Replace Insert Multiple Sel
As soon as selected elements make a closed area, a preview of web is suggested The contour must be selected in the logic sequence.	Acid Before Remove Edit Remove All Unfold position

electing the Base Feature	
A. Click the Surfacic Flange icon	
B. Click the Base Feature tab	
C. Select the web or a flange as Base Feature	Surfacic Flange Definition ? × Base Feature Support EOP Sides and Corners Process Compensations Bend Radius
	OK Cancel Preview

Selectir	ng the Support : Support Type		Select the support type
Suppor	t type :	Click the	Surfacic Flange Definition
Α.	Exact : the support is the surface geometry selected	Support tab	Base reature Support EUP Sides and Corners Proces
В.	Approximation : the selected surfac approximated into a ruled surface a the maximum deviation can be computed according to an approximation length	e is nd	Support Length: 100mm
C.	Angle : the surface of the flange is defined by a curve an angle and a support length	Surfacir Flance	OK Cancel Preview
2	Support Length: 100mm	Base Feature	Support EOP Sides and Corners Proces

Instructor Notes:

Copyright DASSAULT SYSTEMES

5 5 7	
Define the Edge Of Part (EOP)	Select the type flange length
A. Length From OML : length between the or defining the top of the flange and the Ou Line (OML)	CUIVE Iter Mold Surfacic Flange Definition Support EOP Sides and Corners Proces Finite
B. Element FD (Folded) : Boundary element or a plane which intersects the flange su wire projected on the flange surface	t is a surface urface or a
C. Element FP (Flattened) : Boundary eleme surface or a plane which intersects the f flange surface or a wire projected on the flange surface	ent is a flattened e flattened
Surfact Flange Definition ? Base Feature Support EOP Bewent FD B Boundary Element(s): Curve.2	Surfacic Flange Definition ? × Base Feature Support EOP Sides and Corners Proces Image: Constraint of the second
OK Cancel Preview	OK Cancel Preview

Instructor Notes:

Copyright DASSAULT SYSTEMES

Instructor Notes:

 Double Click th dialog box is di 	e Flange in the part or in the tree and the F splayed	lange Definition
3. Modify desired	parameters and click OK to validate	
	Surfacic Flance definition	? x
	Support EOP Sides and Corners Process	Compensati
	B OK Canc	el Preview

INSTRUCTOR GUIDE

Master Exercise: Fighter Airframe

Step 5: Creating a Corner Relief

In this step we will create a corner relief

Instructor Notes:

Copyright DASSAULT SYSTEMES

Instructor Notes:

	J	
A. Double Click the Jo Definition dialog bo	ggle in the tree and the Joggle x is displayed	
B. Modify desired para validate	meters and click OK to	
	Joggle Definition	
	Support: Surfacic Flange.2	
	Offset Type: Depth Surface	
	Offset surface: No Selection	
	Runout: 30mm 🔄 fix)	
	Start Radius: 4mm	
	End Radius:	
	B OK Cancel	

Master Exercise: Fighter Airframe

Step 6: Creating a Joggle

In this step you will create a joggle on a surfacic flange

Instructor Notes:

A. Double Click the Cutout on the part or in the tree and the Cutout Definition dialog box is displayed.		
B. Modify desired paramet	ers and click OK to validate.	
	Cutout Definition	
	End Limit Type: Dimension Depth: 2mm	
	Selection: No selection Delta Selection Delta Selection: Lying on skin Reverse Side Reverse Direction Mare >>>	
	B OK Cance	

Master Exercise: Fighter Airframe

Step 7: Creating a Cutout

In this step we create a cut out on the web

Instructor Notes:

Modifying a Stamp

- A. Double Click the stamp to be modified
- B. Modify desired parameters and click Preview if you wish
- C. Click OK to validate

Instructor Notes:

Copyright DASSAULT SYSTEMES

Master Exercise: Fighter Airframe

Step 8: Creating a Flanged Hole and Bead

In this step we create a flanged hole on the web

Copyright DASSAULT SYSTEMES

Instructor Notes:

Master Exercise: Fighter Airframe

Step 9: Creating Circular Cutouts

In this step we create circular cutouts on the web

Modifying a Feature (3/3) A. Change to WFS workbench Image: State of the offset of a flange support surface C. Change to ASL workbench and update Image: State of the offset of a flange support surface C. Change to ASL workbench and update Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface Image: State of the offset of a flange support surface

Instructor Notes:

Copyright DASSAULT SYSTEMES

Instructor Notes:

Master Exercise: Fighter Airframe

Step 11: Flattening the Part

In this step you will flatten the part and use Multi-view

Master Exercise: Fighter Airframe

Step 12: Drawing Generation

In this step we draw the flatten view of the part

Copyright DASSAULT SYSTEMES

Administration

In this lesson you will learn Administration Tasks.

About Standards

- Standards are embedded in the sheet metal part
- Standards are administrator-defined
- A standard file is available by default
- Editing the standard file

The standard file can be edited using an interactive editor. This editor provides an easy-to-use graphic interface to let you customize the parameters included in the standard file.

In the example below, you can s	see that the thickness ar	nd default bend radius	are
driven by design tables, hence t	they are grayed out (i.e.	you can't modify the v	alues)
Sheet Metal Parameters	SheetMetal Thickness Table , conf	iguration row : 1	?
Parameters Bend Allowance Joggles	Filter :		Edit
Chandrad : Alimpinum	Line Sheet Metal Parameter, 1\Sh <1> Aluminum	eetMetalStandard` Sheet Metal Paramete 1,2mm	r.1\Thickness Sheet Metal Paramete Stiffening_Beads.xls
	2 Aluminum 3 Aluminum	1,6mm 2mm	Stiffening_Beads.xls
Thickness : 1,2mm	4 Aluminum	2,5mm	Stiffening_Beads.xls
Minimum Bend Radius : 1mm			
Default Bend Radius : 2mm			
Sheet Standards Files			
I was a provinte new of the rest			
			•
OK Cancel	4		

٦

	Ю	w to use Knowledge Expert
ŭ) (8	n order to perform a clearance check, you can use the characteristic curves like IML and OML in Check formulas, in the Knowledge Expert Workbench
		Check Editors - Check 1
		Condition Correction Report ↓ : 5F:CATSm_ExtrudedHolePunch;SH:FlangeSurf Report Provember 20/04/2006*/ distance (SF.FD_OML,SH.FD_OML) > 25 mm
ţ	• 1	Thus you can see if the security clearance is verified or not
		Check.1

To Sum Up In this course you have learned how to: Manage sheet metal parameters **1** 1 Create and modify the design of an Hydro formed Sheet Metal Part by defining its internal features: Web ۲ Surfacic Flanges ۲ Joggles ۲ Different kinds of flanges Corner Relieves Cutouts Different kinds of Stamps Holes Points and Curves Mapping Corners and Chamfers Patterns Generate a flattened part **1** Draw a flattened part **1** Fulfill some administration tasks 1 Create a Knowledge Expert Check using characteristic curves

Additional Exercises

You will perform the following additional exercises to reinforce the knowledge gained in this course:

- Additional Exercise: Aerostructure
- Additional Exercise: Bracket
- □ Additional Exercise: Fighter Web Structure
- Additional Exercise: Rib
- Additional Exercise: Fairing Linking

